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Abstract

It is shown that the likelihood function of a Heckman’s simultaneous equations
model is identified by complementing the approach of parameter transformation.
Therefore, the expectation of the log-likelihood function has a single maximum.
Thus, the maximum likelihood estimator becomes asymptotically consistent without
an initial consistent estimator. Additionally, the approach can show the uniqueness
of the log-likelihood functions for the simultaneous Tobit, sample selection (Type 2
Tobit), and simultaneous generalized selectivity models.
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1 Introduction

We consider two structural equations of the following form

y1i = β1y2i + γ
′
1zi + u1i , and (1.1)

y2i = 1I{β2y1i + β3y2i + γ
′
2zi + u2i ≥ 0} , (1.2)

where y1i and y2i are endogenous variables, and zi is the K-variate exogenous variables

independent of the error terms. The error terms (u1i, u2i) follow a bivariate normal

distribution with zero mean, i.e., E [u21i] = σ2 > 0 and E [u1iu2i] = σ12 (σ2
12 < σ2).

Without loss of generality, we use the normalization of E [u22i] = 1. The indicator function

1I{.} takes the value of 1 if the argument is true; otherwise, it is 0.

These structural equations constitute a simultaneous equations model investigated in

a seminal paper by Heckman (1978). We show that the expectation of the log-likelihood

function has a unique maximum using the reparametrization method proposed by Olsen

(1978) to prove the uniqueness of the maximum likelihood estimator of the Tobit model.
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The motivations of this study are as follows. First, the transformation from the

maximum likelihood estimators of the reduced form to the structural parameters of

interest is complex in this model. Therefore, we consider the full information maximum

likelihood (FIML) estimator that directly estimates the structural parameters. Second,

an initial consistent estimator is useful if multiple maximization points exist. Although

Blundell and Smith (1994) proposed the conditional maximum likelihood estimator that

can simply estimate the structural parameters, its second structural parameters of (1.2)

are normalized, and an exclusion restriction for the first structural equation of (1.1) is

used. Thus, an initial consistent estimator for our FIML estimator seems to have been

unavailable. Although we present an initial estimator, the procedure is a three-stage

estimation. Third, if the uniqueness of the maximum likelihood estimator is guaranteed,

the efficient estimator can be obtained directly without the initial estimation procedure.

Additionally, structural analysis can be performed under less assumptions if the first

structural equation does not require a zero constraint. Thus, our approach makes the

Heckman model easier for practitioners to use.

The remainder of the paper is organized as follows. Section 2 explains the log-

likelihood function and reparametrization method. Section 3 presents the conclusions.

2 The log-likelihood function and result

Following Heckman (1978) and Blundell and Smith (1994) for deriving an estimator,

we assume that β1β2 + β3 = 0, which is called the principal assumption or coherency

condition. This condition contributes to the uniqueness of solutions of the nonlinear

simultaneous equations model. The substitution of (1.1) into (1.2) yields

y2i = 1I{(β1β2 + β3)y2i + y∗2i ≥ 0} , (2.3)

where y∗2i = π
′
2zi + v2i, π

′
2zi = (β2γ

′
1 + γ

′
2)zi, and v2i = β2u1i + u2i. Then, the reduced

form y2i = 1I{y∗2i ≥ 0} is uniquely determined under the coherency condition. We can

also construct a maximum likelihood estimator.

Heckman (1978) proposed the maximum likelihood estimators of reduced and struc-

tural forms. This study investigates the FIML estimator that directly estimates the

structural parameters of the first and second structural equations. The likelihood be-

comes a function of the parameters θ under the coherency condition and an exclusion

restriction, where θ = (β1, β2, γ
′
1, γ

′
21, σ, σ12)

′ and γ21 = (γ21, γ22, · · · , γ2(K−1))
′.

For i = 1, · · · , n, the contribution to the likelihood function by observation #i is

�i(θ) = � y2i
1i � 1−y2i

0i , where

�1i =

∫ ∞

0
f(y1i, y

∗
2i)dy

∗
2i , �0i =

∫ 0

−∞
f(y1i, y

∗
2i)dy

∗
2i , (2.4)

and f(y1i, y
∗
2i) stands for the joint-density function.

Assumption (i) E [zφi
z′φi

] is nonsingular, where zφi
= (E [y2i|zi], z′i)

′. (ii) For k =
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K, γ2k = 0 and γ1k �= 0 . (iii) E [z2ik] is bounded. (iv) The parameter space Θ ⊂ R
2K+3

is compact. (v) {zi, u1i, u2i}ni=1 are independently and identically distributed.

The first assumption indicates the absence of multicollinearity. The second one indicates

the exclusion restriction to identify the structural parameters. It means that the last

variable, ziK , of the second structural equation is the excluded variable without loss of

generality. Thus, we obtain the relation γ′
2zi = (γ ′

21, 0)zi = γ ′
21z2i. The third and

fourth assumptions are used for the existence of the expectation of Hessian. Theorem

derives the results for the contribution to the likelihood function by observation #i, so

that the fifth assumption is not used in the proof. However, the assumption is neces-

sary for our statements related to the consistency or limit of the log-likelihood function

ln(θ) = (1/n)
∑n

i=1 li(θ), where li(θ) is defined below. This is because these asymptotic

results are obtained by ln(θ)
p→ E [log �i(θ)] as n → ∞ under the fifth assumption.

As derived in the appendix, the contribution to the log-likelihood function by obser-

vation #i is represented by

li(θ) = log
(
2πσ2

)− 1
2 − u21i

2σ2
+ y2i log Φ

(−β1β2 + ui
σ3

)
+ (1− y2i) log Φ

(−ui
σ3

)
, (2.5)

u1i = y1i − β1y2i − γ′
1zi , ui = β2yi1 + γ

′
21z2i +

σ12
σ2

u1i , and σ2
3 = 1− σ2

12

σ2
, (2.6)

where Φ is the cumulative normal distribution function, σ2
3 = E [u23i], and u3i = (σ12/σ

2)u1i−
u2i. The FIML estimator is obtained by maximizing the log-likelihood function ln(θ).

The contribution of the log-likelihood function (2.5) becomes highly nonlinear in the

parameters. Thus, Heckman (1978) suggested constructing a second-round estimator.

If multiple maximization points exist, the second-round estimator is constructed us-

ing a consistent estimator for the initial value to obtain consistency and efficiency (cf.

Amemiya, 1985).

Olsen (1978) proposed parameter transformation such that the log-likelihood function

of the Tobit model becomes quasilinear in parameters. For instance, (yi1 − γ′
1zi)/σ be-

comes ωyi1−γ′
1ωzi under ω = 1/σ and γ1ω = γ1/σ; thus, it is linear in the transformed

parameters. He established the global concavity of the log-likelihood function for the

transformed parameters. Meanwhile, the likelihood function of Heckman’s model is par-

tially similar to that of the Type 2 Tobit model, which also has a correlation parameter

between equations, such as σ12. These log-likelihood functions are not globally concave

using a parameter transformation. In Heckman’s model, the log-likelihood function has

the term πω(ωyi1 −γ ′
1ωzi) in Φ after some parameter transformation, where the param-

eter πω relates to σ12. It means that the products of parameters remain, such as πωγ1ω;

thus, it is not linear in the parameters. However, Olsen (1982) and Zuehlke (2021) stated

that the Type 2 Tobit model is globally concave conditional on a correlation parameter.

It is also true for Heckman’s model, given πω. To show that πω can be given as the true

value, we introduce a higher-order derivative for an identity of the density function in
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the proof by contradiction. This differential calculus complements the reparametrization

approach.

The proof of the theorem is given in the appendix.

Theorem Let Assumptions (i)-(iv) hold. Then,

(i) θ is identified without exclusion restrictions for the first structural equation;

(ii) θ �= θ0 implies log �i(θ) �= log �i(θ0); thus, E [log �i(θ)] has a unique maximum at the

true value θ0.

The advantage of the first result is that we do not have to use the instrumental vari-

ables for the first structural equation. The second result describes the identification

of the density function. Thus, the limit of the log-likelihood function attains a unique

global maximum at θ0. The advantage of this result is that the FIML estimator is

asymptotically consistent without an initial consistent estimator.

Blundell and Smith (1994) discussed the simultaneous probit, simultaneous Tobit,

and simultaneous generalized selectivity models and proposed the conditional maximum

likelihood estimator for the structural parameters.

First, their simultaneous probit model is identical to our Heckman’s model; therefore,

we can apply the Theorem. Their consistent two-stage estimator of the simultaneous

probit model is based on the following:

P̃r(y2i = 1 | zi, ũ1i) = Φ

(
β2
σ3

ỹ12i +
γ′
21

σ3
z2i +

σ12
σ3σ2

ũ1i

)
(2.7)

� Φ

(
1

σ3σ̂

{
β2ŷ12i + γ

′
21z2i +

σ12
σ̂2

û1i

})
, (2.8)

where ỹ12i = y1i − β̃1y2i and (β̃1, ũ1i) is the estimate of the instrumental variable

estimator and its residual from the first structural equation, respectively. Thus, the

normalized parameters from β2/σ3 to σ12/(σ3σ
2) of (2.7) can be obtained using the

probit estimation. To obtain an initial estimator for efficient estimation without an

instrumental variable, we slightly modify their estimator (2.8), where ŷ12i = y1i − β̂1y2i,

σ3σ̂ = (1 − σ2
12/σ̂

2)1/2, and (β̂1, σ̂, û1i) is the estimates of a nonlinear two-stage least

squares estimator and its residual. The nonlinear two-stage least squares estimator

and consistency including σ12 of the modified estimator are discussed in the appendix.

Although we can construct the initial consistent estimator for the FIML estimator, the

procedure requires three-stage estimation and nonlinear probit estimation of (2.8).

Second, the simultaneous Tobit model under the condition β1β2+β3 = 0 is the model

with the second structural equation of (2.3) replaced by the following Tobit model

y2i = 1I{y∗2i ≥ 0}y∗2i . (2.9)

This simultaneous equations model becomes a simple case of that proposed by Amemiya

(1974). Our approach can derive the same results of Theorem for the simultaneous Tobit

model, as shown in the appendix.
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Third, the simultaneous generalized selectivity model is obtained by replacing the

second structural equation of (2.3) with the following Type 2 Tobit model

y2i = 1I{y∗3i ≥ 0}y∗2i . (2.10)

This simultaneous equations model constructs an extended model of Heckman (1979).

The proof method also clarifies the identification of the density function of the Type

2 Tobit model. The simultaneous generalized selectivity model has three endogenous

variables, increasing correlation parameters. The proof method can be generalized to

the three simultaneous equations model using a cross-partial derivative to obtain the

same results of Theorem, as shown in the appendix.

The above results are summarized as a corollary of Theorem.

Corollary Let Assumptions (i)-(iv) hold. Then, for the simultaneous Tobit and gener-

alized selectivity models,

(i) The structural parameters are identified without exclusion restrictions for the first

structural equation;

(ii) The log of the density function is identified; thus, its expectation has a unique max-

imum at the true value.

3 Conclusions

This note demonstrated that the uniqueness of the objective function of the FIML

estimator for a Heckman’s model using the reparametrization method. Therefore, we can

obtain the consistent and efficient estimator by maximizing the log-likelihood function

directly. Furthermore, we proposed a complemented reparametrization method using

some differential calculus. The proposed method can also be used for similar models to

show the uniqueness of the maximum likelihood estimator.

Appendix

Proof of Theorem : First, we present the contribution to the likelihood function by

observation i. Under β3 = −β1β2 ,

�1i =

∫ ∞

β1β2−β2y1i−γ′
21z2i

g(u1i, u2i)du2i

=
1

σ
φ
(u1i

σ

) ∫ −β1β2+ui

−∞
φ

(
u3i
σ3

)
1

σ3
du3i

=
1

σ
φ
(u1i

σ

)
p(u1i) , and (A.1)

�0i =
1

σ
φ
(u1i

σ

)
(1− p(u1i)) , (A.2)
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where g and φ, are the joint and normal density function, respectively. The second

equality arises from the variable transformation to u3i = (σ12/σ
2)u1i − u2i, and y1i =

β1y2i+γ
′
1zi+u1i is substituted at the third equality, with p(u1i) defined by (A.5). Given

zi, for any θ the following holds,

∑
y2i=0,1

∫ ∞

−∞
�i(θ)du1i = 1 . (A.3)

Proof of (i) The outline is as follows. (i-1) shows the identification of the structural

parameters of the first structural equation without an exclusion restriction using the

nonlinearity of E [y2i|zi] = Φ(π′
22zi) in zi. (i-2) clarifies that θ has a one-to-one corre-

spondence with a transformed parameter θ1, which is identifiable.

(i-1) The first structural equation is given by

y1i = β1Φ(π
′
22zi) + γ

′
1z1i + (u1i + β2y2i − β2Φ(π

′
22zi)) , (A.4)

where π22 = π2/ω2, ω
2
2 = E [v22i] and ω2 is positive by σ2

12 < σ2. π22 is identi-

fied by the expectation of the log of the probability function of the probit model,

Pr(y2i = 1) = Pr(y∗2i/ω2 ≥ 0). This is because of its global concavity and Assump-

tion (i). Then, (β1, γ
′
1) is identified from a nonlinear two-stage least squares estimator

on the population, i.e., (β1,γ
′
1)

′ = E [zφiz′φi]−1E [zφiy1i] where E [zφiz′φi] is nonsingular

from Assumption (i). Then, u1i is identified as the residual, and σ is determined by

E [u21i]. Therefore, we do not use an exclusion restriction for the first structural equation

in the above derivation.

(i-2) Consider the three-stage probit maximum likelihood estimator for identifying the

parameters of the second equation. Given u1i by the residual, the conditional probability

E [y2i|zi, u1i] is given by

p(u1i) = Φ

(
1

σ3

{
π′
2zi + β2u1i +

σ12
σ2

u1i

})
, (A.5)

since y2i = 1I{π′
2zi+β2u1i+(σ12/σ

2)u1i ≥ u3i} and u3i is independent of u1i and zi. The

probit model identifies the coefficients again by the nonsingularity of E [(z′i, u1i)′(z′i, u1i)].
The reduced form coefficients (π′

3, πρ) are identified and have the following relation:

(π′
3, πρ) = (π′

2/σ3, (β2 + σ12/σ
2)/σ3) .

Using (β1, γ
′
1, σ) and (π′

3, πρ), we show that (β2, γ
′
21, σ12) is identified. From

Assumption (ii), β2/σ3 is identified by π3K/γ1K . Moreover, γ′
21/σ3 = π′

3 − (β2/σ3)γ
′
1,

except for k = K. For σ12 , σ12/σ3 = σ2(πρ−β2/σ3) = π12 , i.e., σ12 = π12(1−σ2
12/σ

2)1/2.

By solving it for σ12 , we obtain that

σ12 = ±
√

π2
12

1 + π2
12/σ

2
, (A.6)

where the sign is identified by sgn(π12). Then, σ3 = (1 − σ2
12/σ

2)1/2 is determined.

Therefore, β2 is identified by (β2/σ3)σ3, which is also true for γ21.
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Thus, θ is identified; it has a one-to-one correspondence with θ1 = θ1(θ) = (β1, γ
′
1, σ, π

′
3, πρ)

′ .
�

Proof of (ii) The outline is as follows. Our strategy is that if the density function

is not identified, then the result contradicts Jensen’s inequality (ii-1, ii-4). Thus, we

consider the global concavity of li(θ1), which is generally concave if the arguments of φ

and Φ become linear in the parameters (e.g., Olsen, 1978; Pratt, 1981). However, the

transformation by θ1 is insufficient for linearization. Moreover, (ii-2) is the essential part

and derives that using partial derivatives, 1/σ and πρ can be fixed at the true values.

Thus, we obtain linearization for the remaining parameters. Compared with Jensen’s

inequality, (ii-3) checks the concavity in the sense that E [li(θ1)] is globally concave given

1/σ and πω = σπρ. Although linearization is sufficient by fixing only πω with the trans-

formation ω = 1/σ, we fix σ because the third-order partial derivative can only identify

up to πρ.

(ii-1) We use the transformed parameter θ1 defined above, and put θ01 to distinguish

the true value. Suppose that some θ1 �= θ01 exists such that li(θ1) = li(θ01) for any

given (y1i, y2i, z
′
i), i.e., these values are the same as the density function. Through the

representation of (A.1) and (A.2), we obtain the identity

li(θ1) = log
1

σ
φ
(u1i

σ

)
Φ
(
π′
3zi + πρu1i

)y2i (1− Φ(π′
3zi + πρu1i)

)1−y2i

= log
1

σ0
φ

(
u01i
σ0

)
Φ
(
π′
03zi + πρ0u01i

)y2i (1− Φ(π′
03zi + πρ0u01i)

)1−y2i ,(A.7)

where u1i = y1i − β2y2i − γ ′
1zi, and the representative subscript 0 is evaluated at the

true value θ01.

(ii-2) Partial differentiation is possible with respect to y1i by changing only the error

term u01i. The third-order partial derivative for y1i is also the identity given by

yi2 r̈(π
′
3zi + πρu1i)π

3
ρ − (1− y2i) ḧ(π

′
3zi + πρu1i)π

3
ρ

= yi2 r̈(π
′
03zi + πρ0u01i)π

3
ρ0 − (1− y2i) ḧ(π

′
03zi + πρ0u01i)π

3
ρ0 , (A.8)

where r(x) = φ(x)/Φ(x), h(x) = φ(x)/(1 − Φ(x)), r̈ = ∂2r/∂x2, and ḧ(x) = ∂2h/∂x2 is

the second derivative of the hazard rate, which is ḧ(x) = h(x)[(2h(x)−x)(h(x)−x)−1] .

Suppose πρ �= πρ0. Then, take y2i = 0 and y1i as y1i = 1/(πρ − πρ0)[(π03 − π3)
′zi +

(πργ1 − πρ0γ01)
′zi], respectively. It is the same that the error term u01i is evaluated at

y1i − γ ′
01zi and u03i satisfies the inequality π′

03zi + πρ0u01i < u03i at (A.5), where zi

is not restricted. Then, π′
03zi + πρ0u01i = π′

3zi + πρu1i , so that ḧ(x) is equal on both

sides:

ḧ(π′
3zi + πρu1i)π

3
ρ = ḧ(π′

3zi + πρu1i)π
3
ρ0 . (A.9)

The convexity of h(x) is known, i.e., ḧ(x) > 0 for any x, so that we obtain π3
ρ = π3

ρ0

dividing by it. However, it contradicts the assumption that πρ �= πρ0 . Therefore,

πρ = πρ0 is a necessary condition for the identity of (A.7).
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Similarly, the second partial derivative of y1i under y2i = 0 yields the following:

− 1

σ2
+ ḣ(π′

3zi + πρ0u1i)π
2
ρ0 = − 1

σ2
0

+ ḣ(π′
03zi + πρ0u01i)π

2
ρ0 , (A.10)

where ḣ(x) = ∂h(x)/∂x = h(x)(h(x)− x). We can take π′
3zi + πρ0u1i = π

′
03zi + πρ0u01i

under πρ0 �= 0, then, σ2 = σ2
0. If πρ0 = 0, then σ2 = σ2

0 also holds. Therefore,

the arguments of φ and Φ of li(θ1) become linear in the remaining parameters given

(πρ, σ) = (πρ0, σ0).

(ii-3) Let θ2 = (ω, β1ω, γ
′
1ω, π

′
3, πω)

′ be the parameter transformation such that

ω = 1/σ, β1ω = β1/σ, γ1ω = γ1/σ, and πω = σπρ. Then, there exists a relation

πρu1i = πω(ωy1i−β1ωy2i−γ′
1ωzi). We show the global concavity of E [li(θ2)] = E [li(ψ2)]

with respect to the vector ψ2 = (β1ω, γ
′
1ω, π

′
3)

′, given ω = ω0 = 1/σ0 and πω = σ0πρ0 .

For any nonzero vector t = (t′1, t′2)′, the quadratic form of the Hessian is given by

E
[
t′
∂2li(ψ2)

∂ψ2∂ψ
′
2

t

]
= E [−(t′1zyi)

2 + ġ(zπi)(−σ0πρ0t
′
1zyi + t′2zi)

2
]
, (A.11)

where zyi = (y2i, z
′
i)
′, zπi = π′

3zi + πω0u1i, ṙ(x) = ∂r/∂x, and ġ(zπi) = y2iṙ(zπi)− (1 −
y2i)ḣ(zπi) .

For t1 �= 0, if E [(t′1zyi)2] > 0, then (A.11) is negative since ġ(zπi) < 0, where ṙ(x) < 0

and ḣ(x) > 0 are known for any x. Suppose E [(t′1zyi)2] = 0 for some t1 �= 0. Then, t′1zyi
is degenerated, t′1zyi = 0. Take the conditional expectation, t11Φ(π

′
22zi) + t′12zi = 0 ,

where (t11, t′12)′ = t1. Then, we have the relation t′1E [zφiz′φi] = 0′ or t1 = 0 by

Assumption (i), which contradicts t1 �= 0. Therefore, (A.11) is negative.

For t1 = 0, it holds that t2 �= 0 by the definition of t. Then, (A.11) equals

E [ġ(zπi)(t′2zi)2]. Suppose t2 �= 0 exists such that E [y2iḣ(zπi)(z′it2)2] = 0. Then,

y2iḣ(zπi)(t
′
2zi)

2 = 0, since it is a nonnegative random variable. Moreover, y2i(t
′
2zi)

2 = 0

by ḣ(zπi) > 0 and (t′2zi)2 = 0 by E [y2i|zi] = Φ(π′
22zi) > 0. Since E [ziz′i] is nonsingular

by Assumption (i), t2 = 0, which is a contradiction. Thus, using similar arguments,

we obtain that E [y2iṙ(zπi)(t′2zi)2] < 0 and E [(1 − y2i)ḣ(zπi)(t
′
2zi)

2] > 0. Therefore,

E [ġ(zπi)(t′2zi)2] < 0 for any t2 �= 0, meaning that E [∂2li(ψ2)/∂ψ2∂ψ
′
2] is negative defi-

nite and indeed exists, as shown below.

We show that

∂2E [li(ψ2)]

∂ψ2∂ψ
′
2

= E
[
∂2li(ψ2)

∂ψ2∂ψ
′
2

]
. (A.12)

To verify this condition, we consider the interchanges of the derivative and expectation:

∂E [li(ψ2)]

∂ψ′
2

= E
[
∂li(ψ2)

∂ψ′
2

]
, and

∂

∂ψ2

E
[
∂li(ψ2)

∂ψ′
2

]
= E

[
∂2li(ψ2)

∂ψ2∂ψ
′
2

]
. (A.13)

Let e′k = (0, · · · , 1, · · · , 0) whose k-th element is only unity. For the second equality,∣∣∣∣e′k ∂2li(ψ2)

∂ψ2∂ψ
′
2

ek

∣∣∣∣ ≤ (e′k1zyi)
2 + |ġ(zπi)|(−σ0πρ0e

′
k1zyi + e′k2zi)

2 , (A.14)
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where e′k = (e′k1, e
′
k2). Using the relations that r(x) = h(−x) and ḣ(x) = h(x)(h(x)−x) ,

|ġ(zπi)| ≤ y2i|ḣ(−zπi)|+ (1− y2i)|ḣ(zπi)|
≤ 1 , (A.15)

where the last inequality is from 0 ≤ ḣ(x) ≤ 1 since 0 ≤ 1+h(x)x−h(x)2 ≤ 1 is given by

Heckman (1979). From Assumption (iv), the parameters are bounded, and there exist

positive constants ck such that

∣∣∣∣e′k ∂2li(ψ2)

∂ψ2∂ψ
′
2

ek

∣∣∣∣ ≤ (c0 +

K∑
k=1

ck|zik|)2 + (c0 +

K∑
k=1

ck|zik|)2 a.s. .

(A.16)

The expectation of the right-hand side is finite under Assumption (iii). Under similar

arguments, the case holds for the off-diagonal elements of (A.13). Therefore, the moment

of the Hessian of (A.13) exists and the second equality is valid according to Lebesgue’s

dominated convergence theorem. Similarly, the first equality of (A.13) can be shown.

Thus, we conclude that ∂2E [li(ψ2)]/∂ψ2∂ψ
′
2 is negative definite, i.e., E [li(ψ2)] is globally

concave.

(ii-4) Now, θ1 �= θ01 implies ψ2 �= ψ02, since πρ and σ are fixed at πρ0 and σ0,

respectively. Therefore, for some λ such that 0 < λ < 1 , we obtain

E [li(θ02)] = λE [li(ψ2)] + (1− λ)E [li(ψ02)]

< E [li(λψ2 + (1− λ)ψ02)] = E [li(θ̄2)] , (A.17)

where θ̄2 = (ω0, (λψ2 + (1 − λ)ψ02)
′, πω0)

′. The first equality is from the identity.

Meanwhile, we have E [li(θ̄2)] ≤ E [li(θ02)] by (A.3) and Jensen’s inequality, which is a

contradiction.

Therefore, the first assumption θ1 �= θ01 is false, and θ1 = θ01 is necessary for the

identity. Its contraposition is that θ1 �= θ01 implies li(θ1) �= li(θ01). Then, Jensen’s

inequality strictly holds, E [li(θ1)] < E [li(θ01)] . Under Assumption (ii), θ has a one-to-

one correspondence with θ1. Therefore, the true value θ0 of θ is a unique maximum

point. Thus, we obtain the desired result. �

Using the strategy of the above proof under Assumption, we consider the consistency

of the modified initial estimator and clarify the essential part of the proof to identify the

simultaneous Tobit and generalized selectivity models.

Initial estimation : This part considers the consistency of the modified initial estima-

tor of (2.8). We can assume that the true parameters of the first structural equation are

given. This is because these can be consistently estimated in advance from the nonlinear

two-stage least squares estimator on the sample space, as discussed in Proof of (i). Then,

the representation of (2.8) becomes p(u1i) of (A.5), since y12i = y1i−β1y2i = γ
′
1zi+u1i.
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Hence, the conditional probability given u01i is given as follows:

Φ
(
π′
3zi + πρu01i

)y2i (1− Φ(π′
3zi + πρu01i)

)1−y2i , (A.18)

where σ = σ0 is given in π3 and πρ. Since u01i is evaluated at the true value, the

remaining parameters (β2, γ
′
21, σ3, σ12) of (2.8) are identified by the same arguments

of Proof of (i). Then, the consistency of the modified estimator is shown. �

Simultaneous Tobit : In this part, we identify the structural parameters and density

function for the simultaneous Tobit model.

(i) E [y2i|zi] = [π′
2zi + ω2φ(π

′
22zi)/Φ(π

′
22zi)]Φ(π

′
22zi) is nonlinear in zi, and its pa-

rameters is identified by the expectation of the log of the density function of standard

Tobit model according to the result of Olsen (1978). Hence, similar to Proof of (i), the

structural parameters of the first structural equation can be identified by a nonlinear

two-stage least squares estimator on the population without an exclusion restriction.

We redefine σ2
3 = σ2

2 − σ2
12/σ

2, where σ2
2 = E [u22i] is the structural parameter to be

added instead of σ2
2 = 1. The standard Tobit model given u1i of (A.5) can identify σ3,

and σ12 = π12σ3 holds since the Tobit model contains the probability function of the

probit model. The additional parameter σ2
2 is determined by σ2

3 + σ2
12/σ

2. Therefore,

θτ = (θ′, σ2)′ is identified. �
(ii) Using the representation y2i = π

′
2zi + (β2 + σ12/σ

2)u1i − u3i, the Jacobian of the

variable transformation from (y1i, y2i) to (u1i, u3i) becomes unity. Then, for the density

function of the simultaneous Tobit model, we suppose the following identity:

li(θ1τ ) = log
1

σ
φ
(u1i

σ

) (
ω3φ

(
ω3y2i − π′

3zi − πρu1i
))w2i

(
1− Φ(π′

3zi + πρu1i)
)1−w2i

= log
1

σ0
φ

(
u01i
σ0

)(
ω03φ

(
ω03y2i − π′

03zi − πρ0u01i
))w2i

(
1− Φ(π′

03zi + πρ0u01i)
)1−w2i ,

(A.19)

where w2i = 1I{y∗2i ≥ 0} and ω3 = 1/σ3. Then, the transformed parameters become

θ1τ = (θ′1, ω3)
′. Considering the third-order partial derivative of y1i under w2i = 0, we

obtain the conditions (πρ, σ) = (πρ0, σ0) from the result of Proof of (ii). The arguments

of φ and Φ become linear in the parameters given the conditions (1/σ, πρ) = (1/σ0, πρ0)

and transformation ω3 = 1/σ3. The remaining part of the proof is similar to Proof of

(ii). Thus, the identification of li(θ1τ ) is obtained. Moreover, θ1τ has a one-to-one

correspondence with θτ . Then, θ1τ �= θ1τ0 implies that θτ �= θτ0 and li(θτ ) = li(θ1τ ) �=
li(θ1τ0) = li(θτ0). Therefore, the density function with θτ of the simultaneous Tobit

model is also identified. �

Generalized selectivity model : In this part, we identify parameters and density

function for the simultaneous generalized selectivity model. The third reduced form is

given by y∗3i = π
′
3∗zi + v3i, where ui = (u1i, u2i, v3i)

′ follows a normal distribution with

zero mean and E [v23i] = 1, and E [uiu
′
i] is positive definite.
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(i) The reduced form parameters of E [y2i|zi] = [π′
2zi+ω23φ(π

′
3∗zi)/Φ(π′

3∗zi)]Φ(π′
3∗zi)

where ω23 = E [v2iv3i] are identified by the density function of the Type 2 Tobit model,

as shown below.

Type 2 Tobit : Similar to Proof of (ii), we suppose the following identity, where the

original parameters of the density function are θπ = (π′
2, ω2, ω23, π

′
3∗)

′
:

li(θ1π) = log

(
1

ω2
φ

(
v2i
ω2

)
Φ

(
1

ω4
π′
3∗zi + πτv2i

))y3i (
1− Φ(π′

3∗zi)
)1−y3i

= log

(
1

ω02
φ

(
v02i
ω02

)
Φ

(
1

ω04
π′
03∗zi + πτ0v02i

))y3i (
1− Φ(π′

03∗zi)
)1−y3i ,(A.20)

where y3i = 1I{y∗3i ≥ 0}, πτ = ω23/(ω
2
2ω4), and ω4 = (1 − ω2

23/ω
2
2)

1/2 = (1 − ω2
2π

2
τ/(1 +

ω2
2π

2
τ ))

1/2. Therefore, the transformed parameters θ1π = (π′
2, ω2, πτ , π

′
3∗)′ do not

include ω4. The representative subscript 0 is evaluated at the true value. The third-

order partial derivative of y2i under y3i = 1 yields the following:

r̈((1/ω4)π
′
3∗zi + πτv2i)π

3
τ = r̈((1/ω04)π

′
03∗zi + πτ0v02i)π

3
τ0 . (A.21)

Suppose πτ �= πτ0 and take y2i = 1/(πτ − πτ0)[(π03∗/ω04 − π3∗/ω4)
′zi + (πτπ2 −

πτ0π02)
′zi]. Then, r̈((1/ω4)π

′
3∗zi+πτv2i)π

3
τ = r̈((1/ω4)π

′
3∗zi+πτv2i)π

3
τ0, or πτ = πτ0 is

the necessary condition, since r̈(x) = ḧ(−x) > 0. From the similar arguments of Proof

(ii), ω2 = ω02 holds. Therefore, ω4 can also be fixed at the true value. The arguments of

φ and Φ become linear in the parameters given (1/ω2, 1/ω4, πτ ) = (1/ω02, 1/ω04, πτ0).

Thus, the identification of li(θ1π) is shown. Moreover, θ1π has a one-to-one correspon-

dence with θπ because w23 = ±(ω4
2π

2
τ/(1 + ω2

2π
2
τ ))

1/2, where the sign is determined by

sgn(πτ ). Therefore, the density function with θπ of the Type 2 Tobit model is identified.

�
From the above result, a nonlinear two-stage least squares estimator based on E [y2i|zi]

can identify the structural parameters of the first structural equation without an ex-

clusion restriction. The structural and reduced form parameters of the simultaneous

generalized selectivity model become θ∗ = (θ′τ , σ13, σ23, π
′
3∗)

′, where σ13 = E [u1iv3i]
and σ23 = E [u2iv3i]. Meanwhile, the transformed parameters θ1∗ = (θ′1τ , πσ, πλ, π′

3∗)′

defined by (A.22) can be identified. Consequently, θ∗ has a one-to-one correspondence

with θ1∗ because σ13 = πσσ
2, σ23 = E [((σ12/σ2)u1i − u3i)v3i] = πσσ12 − πλσ

2
3 and θ1τ

has a one-to-one correspondence with θτ . Therefore, θ∗ is also identified. �
(ii) We use the representation v3i = (σ13/σ

2)u1i + (σ33/σ
2
3)u3i + v4i, where σ13 =

E [u1iv3i] and σ33 = E [u3iv3i]. For the density function of the simultaneous generalized
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selectivity model, we suppose the following identity:

li(θ1∗) = log
1

σ
φ
(u1i

σ

) [
1

σ3
φ

(
y2i
σ3

− π′
3zi − πρu1i

)
Φ

(
1

σ4

{
π′
3∗zi + πσu1i + πλu3i

})]y3i

×
[
1− Φ

(
1

σ5

{
π′
3∗zi + πσu1i

})]1−y3i

= log
1

σ
φ

(
u01i
σ0

)[
1

σ03
φ

(
y2i
σ03

− π′
03zi − πρ0u01i

)
Φ

(
1

σ04

{
π′
03∗zi + πσ0u01i + πλ0u03i

})]y3i

×
[
1− Φ

(
1

σ05

{
π′
03∗zi + πσ0u01i

})]1−y3i

, (A.22)

where πσ = σ13/σ
2, πλ = σ33/σ

2
3 , σ4 = (1−π2

σσ
2−π2

λσ
2
3)

1/2, and σ5 = (1−σ2
13/σ

2)1/2 =

(1− π2
σσ

2)1/2. Therefore, the transformed parameters θ1∗ = (θ′1τ , πσ, πλ, π′
3∗)′ do not

include σ4 and σ5. The representative subscript 0 is evaluated at the true value. Partial

differentiation is possible with respect to y1i by fixing v02i and v03i, which is also true for

y2i. Consider the third-order partial derivative of y1i and taking y3i = 0, the conditions

πσ/σ5 = πσ0/σ05 and σ = σ0 are obtained from the result of Proof of (ii). Then, we

have σ13 = ±[σ4
0(πσ0/σ05)

2/(1 + σ2
0(πσ0/σ05)

2)]1/2 where the sign of σ13 is determined

by sgn(πσ0). Hence, πσ = πσ0 and σ5 = σ05 can be fixed.

The first partial derivative of y2i becomes

u1i
σ2

β1 + y3i

[
u3i
σ3

(
1

σ3
+ πρβ1

)
+ r(g(ui))πβ

]
=

u01i
σ2

β01 + y3i

[
u03i
σ03

(
1

σ03
+ πρ0β01

)
+ r(g0(u0i))πβ0

]
,

(A.23)

where g(ui) = (1/σ4)(π
′
3∗zi + πσu1i + πλu3i) and g0(u0i) = (1/σ04)(π

′
03∗zi + πσ0u01i +

πλ0u03i), and πβ and πβ0 are defined by (A.25). (A.23) is obtained since u3i/σ3 =

−y2i/σ3+π
′
3zi+πρu1i and y2i = 0 is constant in (1−y3i) log[1−Φ((1/σ5){π′

3∗zi+πσu1i})].
The cross-partial derivative is given by the partial derivative of (A.23) with respect to

y1i, and taking y3i = 0, it follows that β1/σ
2 = β01/σ

2. Therefore, we obtain the

condition β1 = β01.

We have the following third-order partial derivative of y1i and y2i under y3i = 1,

respectively:

r̈(g(ui))

(
πσ + πλπρσ3

σ4

)3

= r̈(g0(u0i))

(
πσ0 + πλ0πρ0σ03

σ04

)3

, and (A.24)

r̈(g(ui))

(−β1πσ − πλ(1 + πρσ3β1)

σ4

)3

= r̈(g0(u0i))

(−β01πσ0 − πλ0(1 + πρ0σ03β01)

σ04

)3

.

(A.25)

Taking g(ui) = g0(u0i) is possible for some realized values of u01i and u03i. Thus, we

obtain πα = πα0 and πβ = πβ0 since r̈(x) > 0, where πα = (πσ + πλπρσ3)/ω4, πα0 =

(πσ0+πλ0πρ0σ03)/ω04, πβ = (−β1πσ−πλ(1+πρσ3β1))/σ4, and πβ0 = (−β01πσ0−πλ0(1+

πρ0σ03β01))/σ04.

12



Then, we obtain the second partial derivatives of y1i and y2i under y3i = 1 as follows,

respectively:

− 1

σ2
− π2

ρ − ṙ(g(ui))π
2
α = − 1

σ2
− π2

ρ0 + ṙ(g0(u0i))π
2
α , and (A.26)

−β2
1

σ2
−

(
1

σ3
+ πρβ1

)2

+ ṙ(g(ui))π
2
β = −β2

1

σ2
−

(
1

σ03
+ πρ0β1

)2

+ ṙ(g0(u0i))π
2
β .

(A.27)

The cross-partial derivative under y3i = 1 is given by the partial derivative of (A.23)

with respect to y1i:

β1
σ2

+
πρ
σ3

(
1

σ3
+ πρβ1

)
+ ṙ(g(ui))παπβ =

β1
σ2

+
πρ0
σ03

(
1

σ03
+ πρ0β1

)
+ ṙ(g0(u0i))παπβ .

(A.28)

Taking g(ui) = g0(u0i), we obtain the following nonlinear equations with respect to πρ

and σ3 given β1 = β01:

π2
ρ = π2

ρ0 , (A.29)(
1

σ3
+ πρβ1

)2

=

(
1

σ03
+ πρ0β1

)2

, and (A.30)

πρ
σ3

(
1

σ3
+ πρβ1

)
=

πρ0
σ03

(
1

σ03
+ πρ0β1

)
. (A.31)

If πρ0 = 0 or β01 = 0, then σ3 = σ03 by (A.30). Squaring (A.31), we have π2
ρ/σ

2
3 =

π2
ρ0/σ

2
03, if 1/σ03 �= −πρ0β01 and πρ0β01 �= 0. Thus, σ3 = σ03 holds. When 1/σ03 =

−πρ0β01 and πρ0β01 �= 0, it follows that 1/σ2
3 = π2

ρβ
2
1 = 1/σ2

03. Therefore, we obtain

σ3 = σ03. From πρ = ±πρ0 and (A.30), it follows that πρ = πρ0 under β01 �= 0. If

β01 = 0, then πρ = πρ0 holds by (A.31). Thus, we obtain πρ = πρ0.

Using above results, πβ = πβ0, and β01πα = β01πα0 of (A.24), we have the relation

that πλ(1 + πρ0σ03β01 − πρ0σ03β01) = πλ = −(πβ0 + β01πα0)σ4. Therefore, by solving it

for πλ, we obtain

πλ = ±
√

(πβ0 + β01πα0)2(1− π2
σ0σ

2
0)

1 + (πβ0 + β01πα0)2σ2
03

, (A.32)

where the sign is determined by sgn(−(πβ0 + β01πα0))=sgn(πλ0). Thus, we obtain πλ =

πλ0 since πλ0 also satisfies the relation πλ0 = −(πβ0 + β01πα0)σ04. From (A.32), we

obtain that σ4 = σ04.

Therefore, we have the following conditions:

(1/σ, 1/σ3, 1/σ4, 1/σ5, πρ, πσ, πλ) = (1/σ0, 1/σ03, 1/σ04, 1/σ05, πρ0, πσ0, πλ0) .

(A.33)

Thus, the arguments of φ and Φ become linear in the parameters given these conditions.

Additionally, the identification of li(θ1∗) is shown similar to Proof of (ii). The density

13



function with θ∗ of the simultaneous generalized selectivity model is also identified since

θ1∗ has a one-to-one correspondence with θ∗. �
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