Visually Do Economics Data Analysis by Mathematica \#1 Introduction

2nd December, 2018
Gakushuin University, Faculty of Economics
Prof. Yukari SHIROTA

The data

cited from https://www.bps.go.id/subject/52/produk-domestik-regional-bruto--lapangan-usaha-.htm|\#subjekViewTab3

8
[2010 Version] Distribution of
03 Aug 2018 GRDP to Total GRDP of 34 Provinces at Current Market Prices by Province, 2010-2017 (Percent)

Updated on 03 August, 2018

Let's study Mathematica programming using the Indonesia economics data above mentioned.

01 ListPlot

First let's try the command ListPlot.
In Mathematica, do not forget to execute the command line(s) by SHIFT and ENTER at the same time.

```
In/c]:= gdp = Transpose[dd]
            |転置
    gdp [[1]]
    gdp [[2]]
Out/ f = ({1.26, 4.89, 1.53, 6.32, 1.35, 2.92, 0.42, 2.13, 0.52, 1.7,
    16.1, 13.11, 8.64, 0.88, 14.39, 3.93, 1.4, 0.77, 0.64, 1.24, 0.85, 1.21,
    5.4, 0.55, 0.74, 0.83, 2.69, 0.74, 0.23, 0.26, 0.29, 0.22, 0.55, 1.28},
    1.2, 4.89, 1.54, 6.36, 1.36, 2.87, 0.42, 2.16, 0.53, 1.69, 16.5, 12.97, 8.64, 0.87,
    14.4, 4.01, 1.46, 0.76, 0.64, 1.24, 0.84, 1.2, 4.94, 0.55, 0.76, 0.84, 2.79, 0.74,
    0.24, 0.28,0.3, 0.23, 0.54, 1.25), (1.11, 4.91, 1.54, 5.6,1.33, 2.85, 0.43, 2.17,
    0.52, 1.71, 17.07, 13.09, 8.68, 0.87, 14.52, 4.11, 1.51, 0.91, 0.65, 1.26, 0.86,
    1.18, 4.33, 0.53, 0.78, 0.92, 2.92, 0.75, 0.24, 0.28, 0.29, 0.23, 0.54, 1.29},
    1.08, 4.96, 1.55, 5.39, 1.36, 2.8, 0.44, 2.21, 0.51, 1.71, 17.19, 13.06,
    8.63, 0.87, 14.67, 4.09, 1.54, 0.92, 0.66, 1.27, 0.89, 1.16, 4.02,
    0.52, 0.79, 0.95, 3, 0.77, 0.25, 0.28, 0.29, 0.23, 0.53, 1.39})
Outl. = (1.26, 4.89, 1.53, 6.32, 1.35, 2.92, 0.42, 2.13, 0.52, 1.7, 16.1, 13.11, 8.64, 0.88, 14.39, 3.93, 1.4,
    0.77, 0.64, 1.24, 0.85, 1.21, 5.4, 0.55, 0.74, 0.83, 2.69, 0.74, 0.23,0.26,0.29,0.22,0.55, 1.28}
Outf. = (1.2, 4.89, 1.54, 6.36, 1.36, 2.87, 0.42, 2.16, 0.53,1.69, 16.5, 12.97, 8.64, 0.87, 14.4, 4.01, 1.46,
    0.76,0.64, 1.24,0.84,1.2, 4.94, 0.55,0.76,0.84, 2.79,0.74,0.24,0.28,0.3,0.23,0.54, 1.25)
```

See the cdf program. "dd" is defined as 2 dimensional table as follows;
dd=\{\{1.26,1.2,1.11,1.08\},\{4.89,4.89,4.91,4.96\},\{1.53,1.54,1.54,1.55\},\{6.32,6.36,5. $6,5.39\},\{1.35,1.36,1.33,1.36\},\{2.92,2.87,2.85,2.8\},\{0.42,0.42,0.43,0.44\},\{2.13,2.16$, $2.17,2.21\},\{0.52,0.53,0.52,0.51\},\{1.7,1.69,1.71,1.71\},\{16.1,16.5,17.07,17.19\},\{13$. 11,12.97,13.09,13.06\},\{8.64,8.64,8.68,8.63\},\{0.88,0.87,0.87,0.87\},\{14.39,14.4,14. 52,14.67\},\{3.93,4.01,4.11,4.09\},\{1.4,1.46,1.51,1.54\},\{0.77,0.76,0.91,0.92\},\{0.64,0. 64,0.65,0.66\},\{1.24,1.24,1.26,1.27\},\{0.85,0.84,0.86,0.89\},\{1.21,1.2,1.18,1.16\},\{5.4, $4.94,4.33,4.02\},\{0.55,0.55,0.53,0.52\},\{0.74,0.76,0.78,0.79\},\{0.83,0.84,0.92,0.95\},\{$ $2.69,2.79,2.92,3\},\{0.74,0.74,0.75,0.77\},\{0.23,0.24,0.24,0.25\},\{0.26,0.28,0.28,0.28\}$,\{0.29,0.3,0.29,0.29\},\{0.22,0.23,0.23,0.23\},\{0.55,0.54,0.54,0.53\},\{1.28,1.25,1.29,1. 39\}\};

In Mathematica, $\{\cdots\}$ represents a list or a table. A table of a table is a 2 dimensional table.
To indicate the first element of the table, please use the index element like gdp[[1]] or gdp[[2]]. You can get the index element. The index mark is like[[jj]].

$\ln [\cdot]=$ ListPlot［gdp［［1］］］

【ひストープロット

To list the 2013 GDP data，please input ListPlot［gdp［［1］］］．The x axis shows the provincelD from 1 to 34 ．

```
ln[f]= ListPlot[gdp[[1]] }->\mathrm{ province ]
```


リストンフロット

Let＇s add the province name by gdp［［1］］－＞province．
In advance I set the province as follows：
province＝\｛＂ACEH＂，＂SUMATERA UTARA＂，＂SUMATERA
BARAT＂，＂RIAU＂，＂JAMBI＂，＂SUMATERA
SELATAN＂，＂BENGKULU＂，＂LAMPUNG＂，＂KEP．BANGKA
BELITUNG＂，＂KEP．RIAU＂，＂DKI JAKARTA＂，＂JAWA BARAT＂，＂JAWA TENGAH＂，＂DI YOGYAKARTA＂，＂JAWA TIMUR＂，＂BANTEN＂，＂BALI＂，＂NUSA TENGGARA
BARAT＂，＂NUSA TENGGARA TIMUR＂，＂KALIMANTAN BARAT＂，＂KALIMANTAN TENGAH＂，＂KALIMANTAN SELATAN＂，＂KALIMANTAN TIMUR＂，＂KALIMANTAN UTARA＂，＂SULAWESI UTARA＂，＂SULAWESI TENGAH＂，＂SULAWESI SELATAN＂，＂SULAWESI TENGGARA＂，＂GORONTALO＂，＂SULAWESI BARAT＂，＂MALUKU＂，＂MALUKU UTARA＂，＂PAPUA BARAT＂，＂PAPUA＂\};

Please watch out the last mark＂；＂of the above command．The mark＂；＂ means not display the results．

To get better visualization, some options are offered in ListPlot. Axeslabel, PlotLabel, and ImageSize.
The y-axis shows the percentage of each province GDP. DKI Jakarta has the biggest figure which is over 15%.

Table for making the list

$\ln [f]=$ years $=$ Table［kk，$\{k k, 2013,2016\}]$ リスストを作成

Out $(c)=\{2013,2014,2015,2016\}$

Then let＇s make the year number list by Table．
Table［kk，\｛kk，2013，2016\}] means to make the table of variable kk in which kk starts from 2013 to 2016 by step 1.
The result table is input to the variable＂years＂there．

Table of ListPlot

$\ln [/]=$ Table［ ListPlot［gdp［［jj］］\rightarrow province，
リス… リストプロット
AxesLabel \rightarrow \｛＂provinceID＂，＂［2010 Version］Distribution of GRDP to Total GRDP＂\},軸のララ゙ル
PlotLabel \rightarrow years $[[j j]]$, ImageSize $\rightarrow 400\},\{j j, 1,3\}]$
ダロットラベル 画像サイス
2013
［2010 Version）Distribution of GRDP to Total GRDP

2014
［2010 Version］Distribution of GRDP to Total GRDP
12．
10．JAWA TENGAH

O SUMATERA UTARA KALIMANTAN
NATERA SELATAN BANTEN
tCEH I SULAWESI SELATAN PAPUA
－KEP．RIAU KALIMANTAN BAA

In Mathematica，you can make a table of PlotLists．
Wrap up the PlotList command by Table［ $\cdots]$ ．The index of Table is 1，2， 3 ． $\{j j, 1,3\}$ moves the variable jj from 1 to 3 by step 1.
In the above program，years［［jj］］is changed．

Definition of your function

pair［data1＿，data2＿］：＝Table［\｛data1［［k］］，data2［［k］］\}, \{k, 1, Length[data1]\}] リス卜考作成

Let＇s study the definition of your function．In this case，I defined the function ＂pair＂．The＂pair＂function has two parameters which are data1 and data2．To that is a parameter，＂＿＂is added．
The mark＂：＝＂means the definition of a function．

The function＂Length＂returns the length of the table．So variable k moves from 1 to the length of the given data1．

$\ln [r]=\operatorname{gdp}[[1]]$

Out $f=(1.26,4.89,1.53,6.32,1.35,2.92,0.42,2.13,0.52,1.7,16.1,13.11,8.64,0.88,14.39,3.93,1.4$, $0.77,0.64,1.24,0.85,1.21,5.4,0.55,0.74,0.83,2.69,0.74,0.23,0.26,0.29,0.22,0.55,1.28)$
$\ln [f]=\operatorname{gdp}[[2]]$
Out/. $=(1.2,4.89,1.54,6.36,1.36,2.87,0.42,2.16,0.53,1.69,16.5,12.97,8.64,0.87,14.4,4.01,1.46$, $0.76,0.64,1.24,0.84,1.2,4.94,0.55,0.76,0.84,2.79,0.74,0.24,0.28,0.3,0.23,0.54,1.25\}$
$\ln [\cdot]=$ pair[gdp[[1]], gdp[[2]]]
Out $f \cdot=(\{1.26,1.2\},(4.89,4.89\},(1.53,1.54\},\{6.32,6.36\},\{1.35,1.36\},\{2.92,2.87\},\{0.42,0.42\}$, $(2.13,2.16\},(0.52,0.53),(1.7,1.69\},(16.1,16.5\},\{13.11,12.97\},(8.64,8.64)$, $(0.88,0.87),(14.39,14.4),(3.93,4.01),(1.4,1.46),(0.77,0.76),(0.64,0.64),(1.24,1.24\}$, $\{0.85,0.84\},\{1.21,1.2\},(5.4,4.94\},(0.55,0.55\},(0.74,0.76\},(0.83,0.84),(2.69,2.79\}$, $\{0.74,0.74\},(0.23,0.24),(0.26,0.28),(0.29,0.3\},(0.22,0.23),(0.55,0.54\},(1.28,1.25\})$
$\ln [f]=$ dataP $=$ pair [gdp[[1]], $\operatorname{gdp}[[2]]]$
Out $f=\{(1.26,1.2\},(4.89,4.89),(1.53,1.54),(6.32,6.36),(1.35,1.36),(2.92,2.87),(0.42,0.42)$, $(2.13,2.16),(0.52,0.53),(1.7,1.69),(16.1,16.5),(13.11,12.97),(8.64,8.64)$, $0.88,0.87),(14.39,14.4),(3.93,4.01),(1.4,1.46),(0.77,0.76),(0.64,0.64),(1.24,1.24)$, $\{0.85,0.84\},(1.21,1.2\},(5.4,4.94),(0.55,0.55),(0.74,0.76\},(0.83,0.84),\{2.69,2.79\}$, $\{0.74,0.74\},(0.23,0.24),(0.26,0.28),(0.29,0.3),(0.22,0.23),(0.55,0.54\},(1.28,1.25)\}$

So, please try the pair function.
The input data are gdp[[1]] and gdp[[2]].
The pair function returns a set of pair data of gdp[[1]] and gdp[[2]]. Namely, each province's 2013 GDP\% and 2014 GDP\%.

ListPlot of pair data

$\operatorname{In}[\cdot]=$ ListPlot [pair[gdp[[1]], gdp[[2]]] \rightarrow province, PlotRange \rightarrow All]

Let's see the pair data visually.
ListPlot can plot the 2 dimensional data, too.
The option of ListPlot PlotRange->All makes it so that all plot points are visible.

Linear Regression

Let＇s conduct a linear regression on the data．The command is
LinearModelFit．The resultant expression can be displayed by Normal［ $\cdots]$ ．
The decline is 1.00512 ．
Let＇s plot the line using the command Plot．The regm［x］is the line expression and the range is indicated like $\{x, 0,18\}$ ．

Showing many plots such as ListPlot and Plot

$\ln [f]=$ Show［ListPlot［dataP］，Plot［regm［x］，$\{x, 0,18\}]]$
示す リソストプロット
ターロット

I would like to see the regression line and the points at the same time．Then please use Show．The command Show make many plot commans results at the same graph．In the above case，（1）is ListPlot and（2）Plot．

Preprocessing of the input data using an editor

When you use real economics data, it takes some preprocessing of the data so that you can input the data to Mathematica program.
Suppose that the input data is given in Excel.

Preprocessing of the input data using Sakura editor（Any editor would be OK）

```
O-(覀最66更新) - sakura 2.0.1
ファイル(#)
```



```
    1 ACEH
    3 SUMATERA BARAT
    4 RIAU
    6 SUMMATERA SELATAN
    7
    8 LAMPUNG
    9 KEP. BANGKA BELITUNG
10 KEP. RIAU
11 DKI JAKARTA
12 JAWA BARAT
13 JAWA IENGAH
14 DI YOGYAKARTA
15 JAWA TIMUR
1 6 \text { BANTEN}
18 NUSA TENGGARA BARAT
18 NUSA TENGGARA BARAT
19 NUSA TENGGARA TIMUR
20 KAL IMANTAN BARAT
21 KALIMANTAN TENGAH
22 KALIMANTAN SELATAN
23 KALIMANTAN TIMUR
24 KALIMANTAN UTARA
25 SULAWESI UTARA
26 SULAWESI TENGAH
26 SULAWSSS TENGAH
27 SULAWESI SELATAN
28 SULAWESI TENGGARA
29 GORONTALO
29 SULWESI BAPAT
SULAWESI BARAT
```

置換		？\times
置换前（N）$¥ \mathrm{r} ¥ \mathrm{n}$	\checkmark	上検索（U）
置換後（P）＂，＂｜	\checkmark	下検索（D）
クリップボードから貼り付ける（I） 単語単位で探す（W） 英大文字と小文字を区別する（ C ） 正規表現（E） bregonigdill Ver 3.00 with Onigmo 5.15 .0 「すべて置換はは置換の繰返し（I） 見つからないときにメッセージを表示（M） 置換ダイアログを自動的に閉じる（L） 先頭（末尾）から再検索する（て）	直換対象選択文字（ O ）選択始点（1）挿入選択終点（2）追加行削除（3）	該当行マーク（畐）
		置換（R）
		すべて置換（A）
	範囲選択範囲（S）ファイル全体（ O ）	
		キャンｾル（ㅆ）
		ヘルプ（H）

Some editor is needed for the preprocessing．The editor has to have regular expression functions．Any editor is OK so far as it has regular expression functions．
In the above case，I changed the province name list．
ENTER is removed
Terminate each province name by＂＂and＂，＂．
The regular expression ENTER $\nexists r \neq n$ to＂，＂makes the column list to one line． You will copy and paste the line to Mathematica．

Hand modification

县 01ListPlot．nb＊－Wolfram Mathematica 11.3
ファイル（E）編集（E）挿入（D）書式（ R ）セル（ C ）クラフィックス（ G ）評伍（ V ）パレット（ P ）ウインドウ（ W ）ヘルプ（ H ）
$\ln [1]$ ：$=$ province $=\{$＂ACEH＂，＂SUMATERA UTARA＂，＂SUMATERA BARAT＂，＂RIAU＂，＂JAMBI＂，＂SUMATERA SELATAN＂，
＂BENGKULU＂，＂LAMPUNG＂，＂KEP．BANGKA BELITUNG＂，＂KEP．RIAU＂，＂DKI JAKARTA＂，＂JAWA BARAT＂，
＂JAWA TENGAH＂，＂DI YOGYAKARTA＂，＂JAWA TIMUR＂，＂BANTEN＂，＂BALI＂，＂NUSA TENGGARA BARAT＂，
＂NUSA TENGGARA TIMUR＂，＂KALIMANTAN BARAT＂，＂KALIMANTAN TENGAH＂，＂KALIMANTAN SELATAN＂，
＂KALIMANTAN TIMUR＂，＂KALIMANTAN UTARA＂，＂SULAWESI UTARA＂，＂SULAWESI TENGAH＂，
＂SULAWESI SELATAN＂，＂SULAWESI TENGGARA＂，＂GORONTALO＂，＂SULAWESI BARAT＂，＂MALUKU＂，
＂MALUKU UTARA＂，＂PAPUA BARAT＂，＂PAPUA＂\};

Some modification of the input line is needed so that finally you can get the above expression．

Figures from 2013 to 2016 to Mathematica

Then the GDP data of 2013 to 2016 will be moved to Mathematica. The selected area in EXCEL is 2013 to 2016 columns.

You will copy the data to the editor.
On the editor,
ENTER to "\},\{" and
TAB to ","
Then, you can get the 2 dimensional table data as a line.

This is the moved line data. Then you will make some modification.

```
001ListPlot.nb * - Wolfram Mathematica 11.3
```



```
    [f[I]: province = {"ACEH", "SUMATERA UTARA", "SumATERA bARAT", "RIAU", "JAMBI", "SUMATERA SELATAN",
        "BENGKULU", "LAMPUNG", "KEP.bANGKA BELITUNG", "KEP.RIAU", "DKI JAKARTA", "JANA BARAT",
        "JAWA TENGAH", "DI YOGYAKARTA", "JAWA TIMUR", "BANTEN", "BALI", "NUSA TENGGARA BARAT",
        "NUSA TENGGARA TIMUR", "KALIMANTAN BARAT", "KALIMANTAN TENGAH", "KALIMANTAN SELATAN",
        "KALIMANTAN TIMUR", "KALIMANTAN UTARA", "SULAWESI UTARA", "SULAWESI TENGAH",
        "SULAWESI SELATAN", "SULAWESI TENGGARA", "GORONTALO", "SULAWESI BARAT", "MALUKU",
        "MALUKU UTARA", "PAPUA BARAT", "PAPUA"};
    ln[2]= dd = {{1.26,1.2,1.11, 1.08}, {4.89, 4.89, 4.91, 4.96}, {1.53, 1.54, 1.54, 1.55},
        {6.32, 6.36, 5.6, 5.39}, {1.35, 1.36, 1.33, 1.36}, {2.92, 2.87, 2.85, 2.8},
        {0.42, 0.42, 0.43, 0.44}, {2.13, 2.16, 2.17, 2.21}, {0.52, 0.53, 0.52, 0.51},
        {1.7, 1.69, 1.71, 1.71}, {16.1, 16.5, 17.07, 17.19}, {13.11, 12.97, 13.09, 13.06},
        {8.64, 8.64, 8.68, 8.63}, {0.88, 0.87,0.87, 0.87}, {14.39, 14.4, 14.52, 14.67},
        {3.93, 4.01, 4.11, 4.09}, {1.4, 1.46, 1.51, 1.54}, {0.77, 0.76, 0.91, 0.92},
        {0.64, 0.64, 0.65, 0.66}, {1.24, 1.24, 1.26, 1.27}, {0.85, 0.84, 0.86, 0.89},
        {1.21, 1.2, 1.18, 1.16}, {5.4, 4.94, 4.33, 4.02}, {0.55, 0.55, 0.53, 0.52},
        {0.74, 0.76, 0.78, 0.79}, {0.83, 0.84, 0.92, 0.95}, {2.69, 2.79, 2.92, 3},
        {0.74, 0.74, 0.75,0.77}, {0.23,0.24,0.24, 0.25}, {0.26,0.28,0.28,0.28},
        {0.29,0.3, 0.29, 0.29}, {0.22, 0.23, 0.23, 0.23}, {0.55, 0.54, 0.54, 0.53},
        {1.28,1.25,1.29, 1.39}};
```

The "dd" is the final data line.

