Let's Make the 3D Graphics

Price of hamburger
Price of orange squash
Budget

130
3000

18 ${ }^{\text {th }}$ May, 2019
Gakushuin University, Faculty of Economics
Prof. Yukari SHIROTA

3D Plot
Plot3D[$x^{\wedge} 0.2 * y^{\wedge} 0.6,\{x, 0,20\},\{y, 0,20\}$, PlotRange $\left.->\{0,10\}\right]$

3D Plot with other options

Plot3D[$x^{\wedge} 0.2$ * $y^{\wedge} 0.6,\{x, 0,20\},\{y, 0,20\}$, PlotRange $->\{0,10\}$, BoxRatios -> 1, PlotStyle -> \{Opacity[0.7], Green\}, AxesLabel -> \{"Hamburger", "Orange squash", "Utility"\}, ImageSize -> 200]

Pallet for special characters from the menu

Conduct the Lagrange method.

Definition of Lagrange function:

$$
\mathrm{F}\left[\mathrm{x}_{-}, \mathrm{y}_{-}, \lambda_{-}\right]:=\mathrm{x}^{0.2 *} y^{0.6}+\lambda(\mathrm{M}-(\mathrm{P} 1 \mathrm{x}+\mathrm{P} 2 \mathrm{y})) ;
$$

$$
\begin{aligned}
& \ln [=]=\mathbf{F}[\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}] \\
& \text { Out[}]=\mathbf{x}^{\ominus .2} \mathbf{y}^{\theta .6}+(\mathbf{M}-\mathbf{P} 1 \mathbf{x}-\mathbf{P} 2 \mathbf{y}) \lambda
\end{aligned}
$$

Partial differentiation

$$
\begin{aligned}
\ln [--]:= & \mathbf{D}[\mathbf{F}[\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}], \mathbf{x}] \\
& \text { [微分係数 }
\end{aligned}
$$

－Set of equations

$$
\begin{aligned}
& \ln [-]:=\{D[F[x, y, \lambda], x]==0, \mathrm{D}[F[x, y, \lambda], y]==0, M-(P 1 x+P 2 y)==0\} \\
& \text { [䢟分係数 }{ }^{2} \text { 微分係数 } \\
& \text { Out [] }=\left\{\frac{0.2 \mathrm{y}^{\theta .6}}{\mathrm{x}^{\theta .8}}-\mathrm{P} 1 \lambda=0, \frac{0.6 \mathrm{x}^{\theta .2}}{\mathrm{y}^{\theta .4}}-\mathrm{P} 2 \lambda=0, \mathrm{M}-\mathrm{P} 1 \mathrm{x}-\mathrm{P} 2 \mathrm{y}=0\right\}
\end{aligned}
$$

Conduct the Lagrange method.

$$
n[-]:=\operatorname{Solve}[\{D[F[x, y, \lambda], x]==0, D[F[x, y, \lambda], y]==0, M-(P 1 x+P 2 y)==0\},\{x, y, \lambda\}]
$$

We can get the 5 answers. We will use the first real number one.

$$
\begin{aligned}
& \text { Out }[-]=\left\{\left\{\mathrm{x} \rightarrow \frac{0.25 \mathrm{M}}{\mathrm{P} 1}, \mathrm{y} \rightarrow \frac{0.75 \mathrm{M}}{\mathrm{P} 2}, \lambda \rightarrow \frac{0.51017}{\mathrm{M}^{1 / 5} \mathrm{P} 1^{1 / 5} \mathrm{P} 2^{3 / 5}}\right\}\right. \text {, } \\
& \left\{\mathrm{x} \rightarrow \frac{(0.25+\theta . i) \mathrm{M}}{\mathrm{P} 1}, \mathrm{y} \rightarrow \frac{(0.75+0 . \text { i) } \mathrm{M}}{\mathrm{P} 2}, \lambda \rightarrow-\frac{0.412736+\theta .29987 \mathrm{i}}{\mathrm{M}^{1 / 5} \mathrm{P} 1^{1 / 5} \mathrm{P} 2^{3 / 5}}\right\} \text {, } \\
& \left\{x \rightarrow \frac{(0.25+0 . i) M}{P 1}, y \rightarrow \frac{(0.75+0 . i) M}{P 2}, \lambda \rightarrow-\frac{0.412736-0.29987 i}{M^{1 / 5} P 1^{1 / 5} P 2^{3 / 5}}\right\} \text {, } \\
& \left\{x \rightarrow \frac{(0.25+\theta . i) M}{P 1}, y \rightarrow \frac{(0.75+0 . i) M}{P 2}, \lambda \rightarrow \frac{0.157651-\theta .4852 i}{M^{1 / 5} P 1^{1 / 5} P 2^{3 / 5}}\right\} \text {, } \\
& \left.\left\{x \rightarrow \frac{(0.25+0 . i) M}{P 1}, y \rightarrow \frac{(0.75+0 . i) M}{P 2}, \lambda \rightarrow \frac{0.157651+\theta .4852 \text { i }}{M^{1 / 5} P 1^{1 / 5} P 2^{3 / 5}}\right\}\right\}
\end{aligned}
$$

Select the first answer by First command

Replace $\{x, y, u\}$ by the first answer

Replace a variable with a value:

Then pts definition

$$
\text { pts: }=\left\{\frac{0.25 M}{\mathrm{P} 1}, \frac{0.75 M}{\mathrm{P} 2}, 0.637712\left(\frac{M}{\mathrm{P} 1}\right)^{0.2}\left(\frac{M}{\mathrm{P} 2}\right)^{0.6}\right\}
$$

We will use the pts definition repeatedly.

Calculate intersection.

$\ln [-]:=$ Solve[$M-(P 1 x+P 2 y)==0,\{y\}]$
out[$\left[0=\left\{\left\{\mathrm{y} \rightarrow \frac{\mathrm{M}-\mathrm{P} 1 \mathrm{x}}{\mathrm{P} 2}\right\}\right\}\right.$

$$
\begin{aligned}
& \mathrm{M}=2900 ; \mathrm{P} 1=130 ; \mathrm{P} 2=170 ; \\
& \text { zvals=Table[\{xx, (M/P2-xx*P1/P2), xx } \left.\left.0.2 *\left(\mathrm{M} / \mathrm{P} 2-\mathrm{xx}^{*} \mathrm{P} 1 / \mathrm{P} 2\right)^{0.6}\right\},\{\mathrm{xx}, 0,20\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left\{0, \frac{290}{17}, 0 .\right\},\left\{1, \frac{277}{17}, 5.33603\right\},\left\{2, \frac{264}{17}, 5.95524\right\},\left\{3, \frac{251}{17}, 6.26555\right\},\right. \\
& \{4,14,6.42819\},\left\{5, \frac{225}{17}, 6.49881\right\},\left\{6, \frac{212}{17}, 6.50373\right\},\left\{7, \frac{199}{17}, 6.45747\right\}, \\
& \left\{8, \frac{186}{17}, 6.36878\right\},\left\{9, \frac{173}{17}, 6.24319\right\},\left\{10, \frac{160}{17}, 6.08419\right\}, \\
& \left\{11, \frac{147}{17}, 5.89386\right\},\left\{12, \frac{134}{17}, 5.67322\right\},\left\{13, \frac{121}{17}, 5.42239\right\}, \\
& \left\{14, \frac{108}{17}, 5.14056\right\},\left\{15, \frac{95}{17}, 4.82595\right\},\left\{16, \frac{82}{17}, 4.47551\right\}, \\
& \left.\left\{17, \frac{69}{17}, 4.08442\right\},\left\{18, \frac{56}{17}, 3.645\right\},\left\{19, \frac{43}{17}, 3.14458\right\},\left\{20, \frac{30}{17}, 2.55982\right\}\right\}
\end{aligned}
$$

This is the result.
21 points
Let's draw the points.

Draw the 21 points.

$$
\begin{aligned}
& \mathrm{M}=2900 ; \mathrm{P} 1=130 ; \mathrm{P} 2=170 ; \\
& \text { zvals=Table[\{xx,(M/P2-xx*P1/P2),xx0.2*(M/P2-xx*P1/P2) } 0.6\},\{x x, 0,20\}] \\
& \text { ListPointPlot3D[zvals, PlotStyle->Red] }
\end{aligned}
$$

$\ln [-]=\operatorname{Show}\left[P \operatorname{lot} 3 D\left[x^{0.2} * y^{0.6},\{x, 0,20\},\{y, 0,20\}, \operatorname{PlotRange} \rightarrow\{0,10\}\right]\right.$ ，运す［3Dプロット
$M=2900 ; P 1=130 ; P 2=170 ;$
zvals＝
Table $\left[\left\{x x,(M / P 2-x x * P 1 / P 2), x x^{\theta .2} *(M / P 2-x x * P 1 / P 2)^{\theta .6}\right\},\{x x, 0,20\}\right]$ ； リストを作成

ListPointPlot3D［zvals，PlotStyle \rightarrow Red］］

3D散布図
｜プロットスタイル｜赤

Show
Display several items at the same time．

Show［
AAAAAA， BBBBBB， CCCCCC］

From 0.5 to 20 by a step 0.1
－Given x and U
－Unknown y

$\ln [\cdot]=$ Clear［uval］；

｜タリア
Simplify［Solve［uval＝＝x＾（1／5）＊y＾（3／5），\｛y\}]]簡単な。解く
out［－$]=\left\{\left\{y \rightarrow\left(\frac{u v a l}{x^{1 / 5}}\right)^{5 / 3}\right\}\right\}$

$$
y=\frac{u v a l^{\frac{5}{3}}}{x^{\frac{1}{3}}}
$$

uval＝pts［［3］］；

$$
\text { ucurve }=\operatorname{Table}\left[\left\{x, \frac{\text { uval }^{5 / 3}}{\mathbf{x}^{1 / 3}}, \text { uval }\right\},\{x, 0.5,20,0.1\}\right] ;
$$

ListPointPlot3D［ucurve，PlotStyle \rightarrow Red］
〈3D散布図

脌ロットスタイリ ！赤

From 0.5 to 20 by a

U＇s contour

－Maximum point pts［［3］］is
$\left\{\frac{0.25 \mathrm{M}}{\mathrm{P} 1}, \frac{0.75 \mathrm{M}}{\mathrm{P} 2}, 0.637712\left(\frac{M}{P 1}\right)^{0.2}\left(\frac{M}{P 2}\right)^{0.6}\right\}$
Find the u＇s contour curve
LagrangeFEBtext．cdf＊－Wolfram Mathematica 11.3

$$
\begin{aligned}
\operatorname{In}[47]:= & \text { ucurve } \\
\text { Out }[47]= & \left\{\left\{0.5,117.268\left(\left(\frac{\mathrm{P} 1}{3.92308 \mathrm{P} 1+1 . \mathrm{P} 2}\right)^{0.6}\left(\frac{\mathrm{P} 2}{51 . \mathrm{P} 1+13 . \mathrm{P} 2}\right)^{0.2}\right.\right.\right. \\
& \left.15.181\left(\frac{\mathrm{P} 1}{3.92308 \mathrm{P} 1+1 . \mathrm{P} 2}\right)^{0.6}\left(\frac{\mathrm{P} 2}{51 . \mathrm{P} 1+13 . \mathrm{P} 2}\right)^{0.2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \ln [f]= \text { uval }=\operatorname{pts}[[3]] ; \\
& \quad \text { ucurve }=\operatorname{Table}\left[\left\{x, \frac{\text { uval }^{5 / 3}}{\text { xal }^{1 / 3}}, \text { uval }\right\},\{x, 0.5,20,0.1\}\right] ;
\end{aligned}
$$

ListPointPlot3D［ucurve，PlotStyle \rightarrow Red］

Budget Restriction Plane \& Maximum point noted by Arrow

Graphics3D[\{Polygon[\{\{0,M/P2,0\},\{M/P1,0,0\},\{M/P1,0,10\},\{0,M/P2,10\},\{0,M/P2,0\}\}], Arrow[\{pts-\{2,2,0\}, pts\}]]

2 graphics items
(1) Polygon
(2) Arrow

The arrow vector is set to be $\{2,2,0\}$.

Plane \＆ Arrow

$\operatorname{In}[\cdot]=$ Show［Graphics3D［\｛Opacity［0．7］，Glow［Orange］，
运す！3Dグラクィックス［不透明度 光沢 【才レンジ色

Opacity［1］，Red， $\operatorname{Arrowheads[Large],~} \operatorname{Arrow}[\{\operatorname{pts}-\{2,2,0\}, \operatorname{pts}\}]\}]]$

$$
\ln [-]:=\text { Solve }[\mathbf{0} \text { * P1 + } \mathbf{y} \text { * } \mathbf{P 2} \text { =: } \mathbf{M}, \quad\{\mathbf{y}\}]
$$

$$
\text { out[} 0]=\left\{\left\{\mathrm{y} \rightarrow \frac{\mathrm{M}}{\mathrm{P} 2}\right\}\right.
$$

Manipulate small test

$n[=]=$ Manipulate $[$				
Show［				
Plot［P1＋P2＋M，\｛x，0，100\}, PlotRange-> All]				
```], {P1, 100, 200}, {P2, 100, 200}, {M, 500, 2100}, SaveDefinitions }->\mathrm{ True,```				
$\text { Initialization } \rightarrow\{\text { ClearAll }[\mathrm{M}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{~F}]\}$Wのでてを少				
］				

## Change M, P1 and P2 by using sliders Manipulate

```
Manipulate[
Repeated part (a)
```

$M$ with the initial value 3000 of which range is from 100 to 5000 by step 100

## Final combine of all parts

- Remove $\mathrm{M}=2900$; $\mathrm{P} 1=130$; $\mathrm{P} 2=170$; so that the Manipulator can change the values



## Drill

- Change the target function to $\sqrt{x}+\sqrt{y}$
- When you are making the drill program, please close the other manipulation program, because in Mathematica variables may be affected by other program variables.

