

Today I would like to talk about the Analysis of Variance (ANOVA) and multiple comparison. As shown here, the point of ANOVA is the comparison of variances.

In ANOVA, there are two kinds of variances. They are (1) variance between the samples, and (2) variance within each sample. We would like to calculate the two kind of variances. Please do not forget that this is inferential statistics. Our target is the population behavior. A variance can be calculated as sum of squares of deviations divided by degrees of freedom. So we have to count the degrees of freedom.

There are three kinds of ANOVA which are One-way ANOVA, Two-way ANOVA without replication and with replication.

First let's talk about the one-way ANOVA. The null hypothesis is the population average A equals to the population average B and all group population averages are equal. One-way ANOVA has just one factor such as treatment methods and medicines. In two-way ANOVA, there are two factors and an interaction between the two factors may exist.

Let me start with the Two-way ANOVA without replication.

We shall investigate two kinds of effects that are called treatment effects And block effects. The assumption to use the two-way ANOVA is that there is no interaction between two factors.

Let me move on to the two-way ANOVA with replication. Then the model expression, this alpha beta term is the interaction term. In a two-way ANOVA with replication, there are three null hypotheses.

Then Let's start an concrete example. The first one is a one-way ANOVA. The given data of 3 groups is as shown here and the sample size is 5. The null hypothesis is all population averages are equal.

Let's plot the data. The all average is 3.0 and each group averages are 2.9, 3.3, and 3.0. The averages are drawn in the plot. We are interested in a between-group variance and a within-group variance. The between-group variance's base line is the all average. The ratio of the two variances is called F value.

We use the F distribution with 2 and 12 which are the degrees of freedom. This data's F value was 4.8 which falls in the rejection region. So we reject the null hypothesis.

This is the end of this ANOVA. But we would like to know which is greater than others. So after ANOVA, we will conduct a multiple comparison. You are now allowed to repeat t-test repeatedly. We must do a multiple comparison concerning three group comparison.

A multiple comparison method is a test to compare all possible pairs of averages. It tests whether the difference between two group average is significantly large.

There are many multiple comparison methods. Among them Tukey test is a widely used method. The within-group variance includes the all groups' variance information.

Let's use the Tukey method.

The Tukey test make the all possible pairs. In this case, we have three pairs. The Tukey test result told us that the difference between group 1 and 2 and the difference between group 2 and 3.

Let's change the significant level from 5 % to 1 %. The rejection region became smaller. Then the selected significantly different pair was just 1 and 2. We would like to write these kinds of result in our paper. So we shall use the multiple comparison when we handle three or more groups.

Multiple Comparison Dunnett's Test	afte	r AN	NOVA	ł		
 When the null hypothesis of know where the significant d Dunnett's test: a test used to mean to the other (n – 1) gro Control group: a group which 	ANOVA lifferen o comp oups me	A is re ces in are or eans given	jected, the m ne cont any sp	we wa eans li rol gro becial	ant to e up	
treatment		Control Group 24	Treatment 1	Treatment 2	Treatment 3	
		23	29	35	28	
		25	32	33	31	
		26	33	32	30	
		22	30	30	29	
	overege	2/	31	22.0	20.4	

This is another multiple comparison method named Dunnett's test. If you made the control group, then we use the Dunnett's test. The comparison is conducted between the control group average and each group average.

Ľ	unn	ett	'S -	Fest E	Exam	ble	
• ⁻ l	The mainder	eas thre	urem e typ	ient of t bes of d	the pero liet trea	entage of fat c tments	ontent in cows
	Control						Siginificantly different pair
	Group	Treat	tment 1	Treatment 2	Treatment 3	Cignificance lovel	a summaria di ta tha a sutral
	2	4	31	34	29	Significance level	compared to the control
	2	3	29	35	28	0.05	Treatment 1, 2,
	2	5	32	33	31		
	2	6	33	32	30		
	2	2	30	30	29		
average	2	4	31	32.8	29.4		
		DF	SumOfS	q MeanSq	FRatio	PValue	
	Model	3	216.2	72.0667	28.8267	1.09379×10 ⁻⁶	sts Model Dunnett (1 2 3
ANOVA .	Error	16	40.	2.5		, 103010	
anova -	Error	16	40.	2.5	20.0207	, PostTe	sts

This is an example of Dunnett's test. For the given data, every group 1, 2, and 3 is significantly different from the control group average.

Finally, let me talk about the two-way ANOVA with replication. The model expression included the interaction term. Because the interaction between two factors may exist, we add the third null hypothesis which concerns the interaction existence.

Let's conduct the two-way ANOVA. The data is six elephants' blood pressure data. The first factor is medicine XXX and YYY. The second factor is the periods, a start, after one hour and after 2 hours. The repetition number is three per group. The plot shows the average of the three data. The blue line shows the effect of medicine XXX.

			IVIGIC		501150	ii oy tin	
The ch	anges	by the	e medio	ine XXX a	nd YYY	′ in systo	olic blood
pressu	ire of e	elepha	nts are	indicated	in the f	table.	
medicine	0 hour	1 hour	2 hours	184			
XXX	176	179	180	182			
	173	176	184	180			
	179	181	186	179			
YYY	177	180	181	170			
	174	176	179	176			
	179	181	183	174			
	d	1		172 —	0 hour	1 hour	2 hours

First let's set the three null hypotheses.

Г

٦

• The ch pressu	nanges by t Ire of elept	the m nants	nedicine XX are indica	XX and YY ated in the	Y in syst e table.	olic blood
<i>.</i> .	(h)	DF	SumOfSq	MeanSq	FRatio	PValue
facto	orl	1	0.888889	0.888889	0.126984	0.727767
ANOVA \rightarrow	orz	2	102.778	51.3889	7.34127	0.0082/41/
тасто	ori factor2	2	8.11111	4.05556	0.5/9365	0.5/518
Erro	r	12	84.	1.		No medicine effect
Ιστα	1 L	1/	195.778			

This is the result of the ANOVA. First we should check the third interaction hypothesis. Because the p-value is 0.57 then we do not reject the null hypothesis. So the interaction does not exist. After we check no interaction, we shall check the two kinds of main effects. As a result, concerning the factor 2, the F ratio falls in the rejection region.

The factor 2 is the time factor. We would like to know the effect of time in more detail. So we shall do the Tukey test checking all possible pairs. The averages are 176 for 0 hour, 178 for 1 hour, and 182 for 2 hour. The average is the average of 6 data.

The Tukey test told the difference between 0 hours and 2 hours.

Two-way ANOVA with Replication The case of a significant interaction

• The changes by the medicine AAA and BBB in **systolic** blood pressure of elephants are indicated in the table.

medicine	0 hour	1 hour	2 hours
AAA	176	179	189
	173	173	189
	179	181	187
BBB	177	181	181
	174	178	179
	179	183	183

We showed the no interaction case. Then let me move on to the interaction existence case. Now the medicine AAA and BBB are investigated. In the plot, the AAA line and the BBB line are crossed. The interaction must exist, we think.

• Th	e changes by t essure of eleph	he m <u>ants</u>	edicine A are indica	AA and B ated in th	BB in sys e <u>tabl</u> e.	tolic blood
	factor1	DF	SumO+Sq	MeanSq	FRatio	PValue
	Tactori	1	6.72222	6.72222	0.909774	0.358994
ANOVA →	factor2	2	215.444	107.722	14.5/89	0.000614283
	factor1 factor2	2	88.1111	44.0556	5.96241	0.015922
	Error	12	88.6667	7.38889		
	Total	17	398.944			There is an interac

Then as we expected, there is a significant interaction. The third F ratio's P-value is 0.015 which falls in the rejection region.

If there is an interaction, we should not continue the factor 1 and 2 effect checks. This is because we cannot make the correct decision about alpha and beta owing to the term alpha-beta.

Then we conduct all 6 groups multiple comparison. We make the six groups and conduct the multiple comparison on them. The result of Tukey test was 4 differences and the result by the Bonferroni method was 3 differences. When we write a paper, we describe "Because a significant interaction exists, we conduct the multiple comparison of all 6 groups, The results are …".

Welcome your request for teaching materials

- I am Prof Shirota, waiting for your requests and questions about statistics analyses.
- Because I have no idea on your specific research field, I am afraid, I might not be able to answer the question like "What kind of analysis method should I apply for this data (your data) ?" I would be grateful if you could ask a question like "The excellent paper in our field uses XXXX methods. Could you please explain me the XXXX methods ?" In addition, could you please send me the paper ?
- Analysis methods are specific to the research field. So I think I may not be able to answer your question easily. But I would like to look for the approach together with you.