Visually Do Statistics

(1) What is the advantage of studying statistics?
(2)Visualize Singular Value Decomposition

2019/02/26
Prof. Yukari SHIROTA (Gakushuin University)
Prof. Basabi Chakraborty (Iwate Prefectural University)

Why do you have to study the statistical comparison method?

- Student: I am not interested in the statistics.
- Teacher: The comparison method is needed when you write a paper.
- Student: Then when we need to analyze the data, following the teacher's instruction, I can just input the data to SAS or Matlab or so.
- Teacher: If there is no teacher, you can never conduct the analysis. Without the knowledge of the statistical comparison method, you can not analyze your result.

To become a person who can analyze your data, why don't you study the statistical comparison methods?
We will tell you that using the visualization materials.

Frequently Seen Error
You do not notice that the sample average changes every time you measure.

Frequently Seen Error

The sample average changes every time you measure
 - Mr BEAN surveyed the income among

 the city just once owing to the budget problem. The sample size was 50 persons.- Boss: How much is the income average?
- Mr BEAN: The average is 3.47 million JPY.
- Boss: I found that you had not studied statistics.
- Mr BEAN was so shocked to hear that. How does a statistics studying person answer in this case?
- Answer example:

The 95\% confidence interval of the population average concerning
 income is 3.42 million JPY to 3.53 million JPY

Frequently Seen Error

The sample average changes every time you measure

- You should not forget that, every time you measure. For example, 3.47, 3.51, 3.33, \cdots.

The histogram of the sample income average changes as shown here.

- We cannot know the true population income average.
Then we guess that by statistics.

Sample average

Descriptive statistics VS Inferential statistics

POPULATION
We want to infer the population
values from the sampling.

SAMPLE
hini h him

- Seeing the sample behavior, we infer the population behavior.
- The average is not the true population average. Although we want to infer the population variance, we have to use this constrained average.
- $\bar{X}=\frac{1}{10} \sum x_{i} \quad \operatorname{Var}(X)=\frac{1}{10-1} \sum\left(x_{i}-\bar{X}\right)^{2}$

Using Sample average

- Given 10 sample data

- Deviation $\mathrm{x}_{i}-\bar{X}$

Simulation to see a sample variance

 https://www-cc.gakushuin.ac.jp/~20010570/VDStat/unviasedVar1.cdf- Red line: the true population variance that nobody knows
- Please install Wolfram CDF player which is free software.
- Blue histogram: sample variance definition used
- Yellow histogram: population variance definition used
- In inferential statistics, a sample variance (divided by ($n-1$) offers us a better value of the population variance.

Remember

- sample variance

$$
U^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{X}\right)^{2}
$$

- $N\left(\mu, \sigma^{2}\right) \cong N\left(\mu, U^{2}\right)$
- Distribution of sample averages
- $N\left(\mu, \frac{\sigma^{2}}{n}\right) \cong N\left(\mu, \frac{U^{2}}{n}\right)$
(from Central Limit Theorem)

Remember

- $N(0,1)$
- $\operatorname{Prob}(-1.96<X<1.96)=95 \%$

95\% Confidential Interval

1. Suppose that the sample average distribution follows the normal distribution.
2. Calculate the standard deviation sigma of \bar{X} from the income variance.
$\sigma=\sqrt{\frac{0.0354}{n}}=\sqrt{\frac{0.0354}{50}}=0.02662$

$$
N\left(3.473, \frac{0.0354}{n}\right)
$$

5. Find the interval

$$
\begin{aligned}
& X-1.96 \sigma \text { to } \bar{X}+1.96 \sigma \\
& 3.42 \text { to } 3.53 \text { (million JPY) }
\end{aligned}
$$

95\% Confidential Interval

- 95\% interval
$\bar{X}-1.96 \sigma$ to $\bar{X}+1.96 \sigma$

- 90\% interval

$$
\bar{X}-1.65 \sigma \text { to } \bar{X}+1.65 \sigma
$$

- Drill: Find the probability
 from $\bar{X}-1 \sigma$ to $\bar{X}+1 \sigma$.

95\% Confidential Interval

- 95\% interval
- 95\% interval
$\bar{X}-1.96 \sigma$ to $\bar{X}+1.96 \sigma$
- We can say only that the true population average exists in the interval with 95% confidence level.
- We cannot know even which side the population average exists.

$$
\bar{X}-1.96 \sigma \text { to } \bar{X}+1.96 \sigma
$$

- We can say only that the true population average exists in the interval with 95 \% confidence level.
- We cannot know even which side the population average exists.

Graphical materials for 95\％confidential interval

https：／／shirotaabc．sakura．ne．jp／usefulMath／ABC／7－25．cdf
－How many tries can include the true population average？
－Answer：95\％and 95 \％（ 1 failure per 20 tries）

Cited from Y．Shirota et al．，「大学生のための役に立つ数学」，p．144，Kyoritu，Tokyo， 2014.

Central Limit Theorem

Normal Distribution $N\left(\mu, \frac{\operatorname{Var}(X)}{\mathrm{n}}\right)$

Sample average

For example,
$\overline{\mathrm{x}}=\frac{2+0+4+1}{4}=\frac{7}{4}$

Copyright: Prof Yukari Shirota (Gakushuin University), Ms Akane Murakami

Graphical materials for CLT
 Please install Wolfram CDF player which is free． https：／／shirotaabc．sakura．ne．jp／usefulMath／ABC／7－19．cdf

－Let＇s operate and look at the distribution，getting near to the normal distribution．

Summary

- 95\% confidence interval
- Central Limit Theorem

Frequently Seen Error
In comparison of average values, the higher average value does not always mean the better methods.
(1) Comparison of two methods \rightarrow Hypothesis testing about $\mu_{1}-\mu_{2}$
(2) Comparison of three methods \rightarrow Analysis of variance (ANOVA)

See the variances

- If the average difference is too small, compared to variances, we cannot say that the method A is superior.

Comparison of two methods \rightarrow Hypothesis testing about $\mu_{1}-\mu_{2}$

Frequently Seen Error

The higher average value does not mean the better methods.

- There are two kinds of methods(treatments) A and B which you can take.
- Two samples of the effects are as shown here where each sample size is 30 .
- Higher value, the better effect the method has.
- Mr BEAN's remark: The method A is better than B, because the average is higher than B.
- The remark is INCORRECT.
- You should use a hypothesis test for the comparison to say whether A is superior or not.

Calculate the variance between samples and the variance within samples

- This is inferential statistics.

We want to infer these behaviours.

The variance of sample A is still larger than one of sample B.

- The difference of two average $\overline{X_{1}}$ and $\overline{X_{2}}$ is not so large, compared to the variance of A

Sampling distribution of $\overline{X_{1}}-\overline{X_{2}}$
 Sample average
 $\bar{X}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{n}$

- $\overline{X_{1}}-\overline{X_{2}}$ follows
a normal distribution

$$
N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

This is the theory.

Distribution of $X_{1}+X_{2}$ follows $N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Distribution of $X_{1}-X_{2}$ follows $N\left(\mu_{1}-\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Sampling distribution $\overline{X_{1}}$ follows $N\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right)$

Sampling distribution of $\overline{X_{1}}-\overline{X_{2}}$
 Sample average
 $\bar{X}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{n}$

- $\overline{X_{1}}-\overline{X_{2}}$ follows
a normal distribution

$$
N\left(\mu_{1}-\mu_{2}, \quad \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

This is from the theory CLT.

Suppose that
$\mu_{1}-\mu_{2}=0$.

- Conditions to be required:
- Two samples are independent
- The standard deviations σ_{1} and σ_{2} are known.
- Both sample sizes are large ($\geqq 30$)

Hypothesis testing

- Null hypothesis
- $H_{0}: \mu_{1}-\mu_{2}=0$ (The two population averages are not different.)
- Alternative hypothesis
- $H_{1}:$: $\mu_{1}>\mu_{2}$ (The population average of A is greater than one of B .)

The obtained value

> Sample average
> $\bar{X}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{n}$

- $\overline{X_{1}}-\overline{X_{2}}$ was $1.3 \rightarrow \frac{1.3}{\sigma}=\frac{1.3}{0.344}=3.77$

$$
N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

- Conditions to be required:
- The standard deviations σ_{1} and σ_{2} are known. $\sigma_{1}=1.6^{2}, \sigma_{2}=1$

Probability density

- $\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}=1.6^{\wedge} 2 / 30+1 / 30=0.1187$
- $\sigma=\left(\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)^{\wedge} \wedge 0.5=0.344$

Two-tailed test

significance level 1\%

- $Z=3.77$ falls in the rejection region

Because the 1\% boundary is 2.32

- The null hypothesis was rejected.
- Making the decision: We conclude that $\mu 1>\mu 2$

Comparison of three methods \rightarrow Analysis of variance (ANOVA)

Frequent Error

The higher average value does not mean

 better method.- There are three kinds of methods(treatments) A, B and C which you can take.
- Three samples of the effects is as shown here where each sample size is 50 .
- Higher the value, better the effect the method has.
- Mr BEAN's remark: The method A is better than B or C, because the average is higher than others.
- The remark is INCORRECT.
- You should use ANOVA for the comparison to say whether A is superior or not.

Hypothesis testing

- Null hypothesis
- $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ (All three methods population averages are equal.)
- Alternative hypothesis
- H_{1} : Not all three methods population averages are equal.

ANOVA is a procedure that is used to test the null hypothesis.

- grand average $\bar{X}=\frac{1}{\{50 \times 3\}} \sum_{i=1}^{3} \sum_{j=1}^{50} x_{i, j}$
- sample(treatment)average $\bar{X}_{i}=\frac{1}{50} \sum_{j=1}^{50} x_{i, j}$
- Let's calculate the total sum of squares of deviations.

$$
x_{i, j}-\bar{X}=\left(\bar{X}_{i}-\bar{X}\right)+\left(x_{i, j}-\bar{X}_{i}\right)
$$

effect of treatment effect of noises
$\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}\right)^{2}=\sum_{i=1}^{3} \sum_{j=1}^{50}\left(\overline{X_{i}}-\bar{X}\right)^{2}+\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}_{i}\right)^{2}$

Total sum of squares is between-samples sum of squares + within-samples sum of squares
If between-samples sum of squares \gg within-samples sum of squares, the null hypothesis is rejected.

$$
x_{i, j}-\bar{X}=\left(\bar{X}_{i}-\bar{X}\right)+\left(x_{i, j}-\bar{X}_{i}\right)
$$

effect of treatment effect of noises
$\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}\right)^{2}=\sum_{i=1}^{3} \sum_{j=1}^{50}\left(\bar{X}_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}_{i}\right)^{2}$
Total sum of squares is between-samples sum of squares + within-samples sum of squares
If between-samples sum of squares $\gg \underline{\text { within-samples sum of }}$ squares,
then the null hypothesis is rejected.
Some treatment exists.

Calculate the variance between samples and the variance within samples

- THEORY:

Variance is defined as
\{sum of squares of deviations\}
\{degrees of freedom\}

```
Ratio of
the variance of between-samples and the variance of within-samples
```


Degrees of freedom of each term

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}\right)^{2}=\sum_{i=1}^{3} \sum_{j=1}^{50}\left(\bar{X}_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}_{i}\right)^{2} \\
& \text { Total sum of squares is between-samples sum of squares +within-samples sum of squares }
\end{aligned}
$$

- $3 * 50-1=149$
- $3-1=2$
- $3 *(50-1)=147$
k: \# of methods(treatments)
n : \# of data within the method
- $\mathrm{k}^{*} \mathrm{n}-1$
- $k-1$
- $k^{*}(n-1)$
- If every time the average value changes, the average is a constraint which decreases the degrees of freedom.

Calculate the variance between samples and the variance within samples

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}\right)^{2}=\sum_{i=1}^{3} \sum_{j=1}^{50}\left(\bar{X}_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\bar{X}_{i}\right)^{2} \\
& \text { Total sum of squares is between-samples sum of squares +within-samples sum of squares }
\end{aligned}
$$

- $\frac{\sum_{i=1}^{3} \sum_{j=1}^{50}\left(\overline{X_{i}}-\bar{X}\right)^{2}}{2}=38.8333$
- $\frac{\sum_{i=1}^{3} \sum_{j=1}^{50}\left(x_{i, j}-\overline{X_{i}}\right)^{2}}{147}=0.566189$
- Ratio of the variance between samples and the variance within samples is called the test statistics F 68.5872
- F follows F distribution (α, β)
α : degrees of freedom for the numerator
β : degrees of freedom for the denominator

Sample of F-distribution

Please install Wolfram CDF player which is free.
https://www-cc.gakushuin.ac.jp/~20010570/VDStat/Fdist.cdf

- F distribution with 7 and 10

degree of freedom for the numerator
degree of freedom for the denominator
$(1-\alpha($ significance lecvel $) * 100 \%$

Compare the F-distribution for $\operatorname{df}(2,147)$

The effect of treatments is larger than the noise effect.

Make a decision

- Not all three methods population averages are equal.

ANOVA \rightarrow		DF	SumOfSq	MeanSq	Ratio	PValue		All	3.85639
	Model	2	77.6666	38.8333	68.5872	$9.10621 \times 10^{-2 .}$		Model [1]	4.79577
	Error	147	83.2298	0.566189			CellMeans \rightarrow	Model [2]	3.72557
	Total	149	160.896					Model [3]	3.04782

Comparisons A vs C, A vs B , and B vs C

- A vs C

	DF	SumOfSq	MeanSq	FRatio	PValue		All
ANOVA \rightarrow Model	1	76.383	76.383	120.365	9.57598×10^{-19}	, CellMeans \rightarrow Model $[1]$	4.79577
Error	98	62.1902	0.634594				Model $[3]$
Total	99	138.573					

- A is superior to C
- A vs B

ANOVA \rightarrow	Model Error	DF	SumOfSq	MeanSq	FRatio	PValue			
		1	28.6335	28.6335	34.5199	5.80839×10^{-8}, CellMeans \rightarrow		All	4.26067
		98	81.2889	0.829478				Model [1]	4.79577
	Total	99	109.922					Model [2]	3.72557

- B vs C

Summary of ANOVA

- Please do not say method A is better, only because the average is higher than others.
- Remember
- Variance ratio follows the F-distribution
- Variance definition

$$
\frac{\{\text { sum of squares of deviations }\}}{\{\text { degrees of freedom }\}}
$$

Conclusion of this talk

- Let's infer the population average/variance more precisely, with the power of statistics.
- KEYWORD here appeared:
- Normal distribution
- 95\% confidential interval
- Inferential statistics
- Degrees of freedom
- Hypothesis testing, Null hypothesis, Alternative hypothesis
- Significant level, Rejection region
- ANOVA
- Test statistics F
- F-distribution

