ラグランジュ未定乗数法ドリル問題集

作成 白田由香利

学籍番号_____ 氏名_____

(Q1) CAT-DOG company produces and sells two kinds of goods, A and B. Let x and y be the respective production quantities. Find the total production cost C when the production cost is minimized under the constraint that the sum of both production quantities is 72.

 $C=12x^2-6xy+6y^2$

$$C(x, y) = 12x^2 - 6xy + 6y^2$$

In the problem, approximate how much the production cost increases when the number of constraints is increased to 73 from the optimal solution C.

Given Data:
1. Production quantities: x (quantity of good A) and y (quantity of good B).
2. Total production cost function:
$C=12x^2-6xy+6y^2$
3. Constraint: The sum of both production quantities is 72, i.e.,
x+y=72
Unknown:
- The minimized total production cost C under the given constraint.
So, the problem is to find the value of C when the production quantities x and y are optimized
under the constraint $x+y=72$.
4» P C P

The change in the constraint Δg is: $\Delta g = 73 - 72 = 1$

The approximate change in the objective function (production cost) ΔC can be estimated using λ : $\Delta C \approx \lambda \cdot \Delta g = 378 \cdot 1 = 378$

So, the approximate increase in production cost is: $\Delta C pprox 378$

Therefore, when the constraint changes from x + y = 72 to x + y = 73, the production cost is expected to increase by approximately 378.

(Q2)

Given the production function as follows, find the point Q at which Q is maximized under the constraint that 2K + L = 200. From the point of the optimal solution, approximate how much Q will increase if 200 in the equation is increased to 201.

 $Q(K,L) = K^{0.6}L^{0.3}$

(Q3) The prices of two kinds of goods A and B are 100 yen and 200 yen. The budgeted amount is 3000 yen. Let x and y be the respective production quantities. We want to maximize utility by purchasing A and B using up the budgeted amount. The utility function u is given by

$$u(x, y) = \sqrt{x} + \sqrt{y}$$

Find the number of goods A that maximizes utility. Also, approximate how much the utility would increase if the budget were increased by one more yen at that point.

(Q4)

Under the condition $x^2+y^2=1$, find x and y values which maximize the following $z(x, y) = y^2 + 9y^2 + 8x^*y$.

Given Data

1. Function to maximize:

$$z(x,y) = 9x^2 + 9y^2 + 8xy$$

2. Constraint:

 $x^2 + y^2 = 1$

Unknowns

1. Optimal values of x and y that maximize $\overset{(\downarrow)}{z_{\chi} x}, y)$

