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ABSTRACT 
 
Ramseyer and Rasmusen (2003) argue that a judge who once belonged to a leftist group takes 
longer to reach a moderately prestigious administrative status, and that Japanese judges are 
conservatively biased.  Their findings are, however, dependent on the assumption that they 
observe or completely estimate the timing of promotion for all judges, which is not correct.  In 
an attempt to deal with the issues of censoring and time dependence, we apply survival analysis 
to the data set of judicial careers, which provides us with a methodological challenge to solve 
simultaneously the problems of left truncation and split population.  Moreover, we propose a 
way to estimate an average treatment effect on duration time and to perform matching to reduce 
model dependence of our analysis.  A most important finding is that leftist judges are less 
likely to be on the track to a prestigious post, but once they are on the track, they are not 
discriminated in terms of the timing of promotion. 
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INTRODUCTION 
 
The Japanese Constitution stipulates that all judges shall be independent in the exercise 

of their conscience and shall be bound only by the Constitution and the laws.  At the same time, 
it provides the Cabinet with the power to designate a Chief Supreme Court Judge (appointed by 
the Emperor) and to appoint other Supreme Court Judges.  The judges of the inferior courts 
shall be nominated by the Supreme Court and appointed by the Cabinet, while no executive 
organ is empowered to administer disciplinary action against judges.  Ramseyer and Rasmusen 
(2003) argue that, despite the Constitution, Japanese judges routinely validate what the 
government has done, and question the conventional view in which the Japanese judicial system 
is independent of political control.  In order to substantiate their view, they have shown in a 
series of statistical examinations that judges with leftist preferences do worse in their careers.  
While agreeing on the importance of analyzing judicial independence, we suggest that their 
methods are problematic. 

To be concrete, Ramseyer and Rasmusen examine whether or not a judge who once 
belonged to a leftist group took longer to reach the moderately prestigious administrative status 
known as sokatsu, hereafter we call a “division chief judge (DCJ)”.1  In order to regress the 
time to DCJ in an OLS model, they drop some judges from the career data set and substitute 
arbitrary values for those who even did not reach DCJ.  The problem with this data 
manipulation is not only to cause bias in the estimates, but also to ignore the time-dependence 
of an event such as a judge obtaining a DCJ appointment.   

Survival analysis provides an efficient solution to simultaneously deal with the issues of 
censoring and time-dependence.  In particular, we consider the possibility that some judges 
may have a chance to become DCJ, while others may have no chance at all.  To account for the 
problem of incorrectly assuming all observations will eventually make a transition, we apply a 
split population model to the data set of judicial career.  Also, we attempt to deal with the issue 
of what is called “left truncation,” an issue rarely addressed in the context of split population 
modeling.  At the same time, we take causal inference seriously and match every observation 
with its similar one so that our survival analysis is less dependent on the particular models we 
specify.   
 This paper proceeds as follows.  We begin with a brief review of the argument made 
by Ramseyer and Rasmusen (2003) and a replication of the statistical analysis reported in their 
book.  The second section reconsiders their analysis.  First, we correct their career data and 
report the OLS results using the corrected data set.  Second, we turn to an explanation of 

                                                  
1 A judge with this status is the head of the division of a court and eligible to preside court for 
the cases requiring consultation with associate judges. 
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survival analysis, left truncation and split population model, and a description of our data set, 
which treats the time needed for a judge to become DCJ as a duration time in a survival analysis 
setting.  Third, we extend our model to other judicial postings that Ramseyer and Rasmusen 
did not consider.  Fourth, we discuss the issue of causal inference and introduce a matching 
method.  In the subsequent section, we conduct matching and survival analysis of judicial 
promotion. Our findings claim that leftist judges are less likely to be on the track to DCJ, 
although once they are on the track, their timing to DCJ is not discernible from that of other 
judges.  We conclude with a summary of the findings and a brief discussion of their 
implications for a better understanding of judicial independence in Japan and elsewhere. 

 
REPLICATION 

 
Ramseyer and Rasmusen argue that judges with leftist preferences and/or enjoining the 

conservative government do worse in their careers.  In their view, the Japanese courts use job 
postings as incentives and judges uphold the conservative positions of the longtime incumbent 
Liberal Democratic Party.  Among many statistical analyses, Ramseyer and Rasmusen use the 
career data of roughly 500 judges and show that judges who joined a leftist group were 
promoted more slowly than their peers.  In this paper, we begin by replicating the statistical 
analysis of judicial career reported in Ramseyer and Rasmusen (2003, p.41). 

Using a list that details all posts held by judges (Nihon Minshu Horitsuka Kyokai Shiho 

Seido Iinkai 1998), Ramseyer and Rasmusen (2003, p.39) compiled the judicial career data for 
those hired between 1959 and 1968.  Although it is ideal to have the pay data on individual 
judges, there is no such data.  Instead, they focus on the time it takes for a judge to reach the 
status of DCJ, as a proxy for the rate at which a judge climbs the pay scale, since generally 
judges do not receive a DCJ posting until they reach a specific rank in the pay scale.  A 
variable they call Time2Sok is defined as the year a judge first received a DCJ appointment, less 
the year he or she graduated from the Legal Research and Training Institute.   

Ramseyer and Rasmusen (2003, pp.177-178) make two main adjustments.  First, they 
drop those judges who held non-judicial postings (generally regarded as prestigious) in the two 
years before their first DCJ posting (hereafter we call these judges “stars”).  In the rare cases 
where a judge served as chief judge before serving as DCJ, they keep such cases in the data set 
and treat the appointment as chief judge as a DCJ posting, since such an appointment is 
unambiguously higher than DCJ.  Second, they drop the group of 164 judges who (1) never 
obtained a DCJ appointment and (2) quit or died before the mean Time2Sok for the rest of the 
group, 20.41 years (whom we call “dropouts”).  However, they kept 83 judges who quit or died 
after 20.41 years without a DCJ appointment and treated their death or resignation as their time 
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of first DCJ appointment (whom we call “losers”).  Also, they include the judges who did not 
have a DCJ appointment as of 1997, the last year the list of judges reports career data.  In 
addition to these adjustments, they drop judges who did not join the court within a year of 
graduating from the Legal Research and Training Institute.  Of 797 judges listed for the period 
between 1959 and 1968, 501 remain in the career data set. 

To test for political discrimination, Ramseyer and Rasmusen introduce a variable 
named YJL, which takes the value 1 if a judge was a member of the communist-leaning Young 
Jurists League (YJL) in 1969 and 0 otherwise.2  They argue that leftist judges are discriminated 
in moving up the pay scale, and thus expect that in a regression model of Time2Sok, the 
coefficient for YJL is estimated to be statistically significant positive.  In addition, they 
consider the following factors as control variables. 

Flunks is defined as the number of years between college graduation and entrance to 
the Legal Research and Training Institute, which is estimated from birth year and assumed to 
approximate the number of times a judge failed the entrance exam to the Legal Research and 
Training Institute.3  Elite_College takes the value 1 if a judge graduated from either the 
University of Tokyo or the University of Kyoto, two of the most prestigious national 
universities in Japan, and 0 if otherwise.4  1st_Tokyo takes the value 1 if a judge started at the 
Tokyo District Court and 0 otherwise, accounting for the fact that the most promising are 
generally assigned to the Tokyo District Court. 5   In order to control for unobservable 
differences among the cohorts, dummy variables indicating the year in which a judge finished 
his or her legal education are incorporated into estimation.6 

Model 1 in Table 1 reports the OLS results in Ramseyer and Rasmusen (2003, p.41).7  
What most notable from their perspective is the coefficient of 0.919 for YJL, whose statistical 
significance is 0.088.  The estimate implies that judges who were the YJL members as of 1969, 
controlling for other factors, received their first DCJ assignment roughly a year later than their 
non-YJL peers.  Although this is not the sole evidence they provide, it is certainly the most 
fundamental one to support their idea of conservative judges doing better in climbing the pay 

                                                  
2 Ramseyer and Rasmusen use Shiso Undo Kenkyusho (1969), which reproduced the list of 
members from the YJL’s newsletter. 
3 The two cases with no birth record are assigned with the mean of Flunks for the group as a whole.  
The calendar year is used to calculate Flunks. 
4 In cases with no school record, judges are assumed to be non-elite college graduates. 
5 A judge started at a summary court in the Tokyo area is not considered as a Tokyo starter. 
6  Ramseyer and Rasmusen also examine another estimation model that includes variables 

identifying whether or not a judge is male and whether or not a judge started at a branch office, 
although we do not consider these and focus on their simpler model. 

7 Following Ramseyer and Rasmusen, the estimates for the cohort dummies are not reported.  The 
data used to estimate the model is available at 
 http://pacioli.bus.indiana.edu/erasmuse/jbook/jbook.htm. 
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scale.  We believe that it is worth checking whether or not the estimated effect of YJL on 
Time2Sok has a systematic basis. 

<Table 1 about here> 
 

RECONSIDERATION 
 

1. Data Cleaning 
Given our goal of reconsidering Time2Sok as a duration time to reach the first DCJ 

post in a survival analysis setting, we compiled the judicial career data by ourselves.  In the 
process of data compilation, we found that some of their data do not exactly match what are 
available in the data sources.  To be concrete, mismatches are identified for 15 cases for 
Time2Sok, 4 cases for YJL, 1 case for Elite_College, and 4 cases for Flunks.8  Model 2 in Table 
1 reports the OLS results using our data set with corrections.  These estimates are not 
drastically different from what Ramseyer and Rasmusen reported.  Their data and our 
corrected data are not substantially different, as indicated by Table 2 that reports the summary 
statistics of the variables used to estimate Models 1 and 2 in Table 1, except the cohort dummies.  
Nonetheless, the estimate of 0.818 for YJL is slightly smaller, and with the almost same standard 
error, considerably losing the statistical significance (0.131).  Thus, even without reconsidering 
the adequacy of regressing Time2Sok in an OLS setting, it is clear that their argument of YJL 
members moving up the pay scale more slowly is not warranted and critically depends on 
whether or not their data set was compiled with care.  

<Table 2 about here> 
 
2. Survival Analysis 
Duration and Right Censoring.  Moreover, the analysis by Ramseyer and Rasmusen relies 
heavily on their assumption of Time2Sok and the adjustments made when they compiled the 
career data.  Why had they excluded the “dropouts” from the career data, who quit or died 
early in their career without obtaining a DCJ appointment, and assumed even the “losers” who 
never obtained a DCJ appointment reaching their first DCJ appointment at their death or 
resignation?  It is simply because without these adjustments, they cannot calculate Time2Sok 
for these “dropouts” and “losers.”  However, these adjustments are problematic since the 
“dropouts” had a chance to receive a DCJ posting if they were not dead or continued to serve as 
a judge, and the exclusion of these “dropouts” ignores the time they spent as a judge to reach 

                                                  
8 See Masuyama (2005) for details.  One of the mismatches for Time2Sok is the case that took 17 

months to become a judge after the graduation from Legal Research and Training Institute, which 
should not be included in the data set if the criterion of Ramseyer and Rasmusen is strictly applied.  
It seems they used the year the judge hired as a starting year to calculate his Time2Sok. 
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DCJ.  Similarly, quasi Time2Sok calculated for the “losers” is necessarily shorter than their true 
Time2Sok since the latter must include the additional time they needed to receive a DCJ posting 
if they were not dead or continued to serve as a judge.  This problem is more serious for the 
judges who were assumed to obtain a DCJ appointment in 1997, due to the list of judges that 
only covers the job postings up to 1997.  In other words, these data adjustments affect in a way 
to systematically exclude the time spent as a DCJ candidate and necessarily cause bias in 
estimating time to DCJ.   

Survival analysis is a set of statistical techniques used to provide an answer to the 
question of how long it takes for an event of interest to occur.9  To be concrete, survival 
analysis asks how the duration spent in one state affects the probability that an individual of 
interest will make a transition to another state.  The focus of survival analysis is placed on 
estimating the hazard rate, which is the probability that an event will occur at a particular point 
in time, given that it has not yet occurred.  Not only survival analysis deals simultaneously 
with the questions of if something occurs and when it occurs, but also it provides an efficient 
solution for the issue of censoring, which becomes a problem whenever the scope of analysis is 
limited to a certain time period.  In survival modeling, an event of interest is unobservable 
simply because it has not yet reached a point in time for the event to occur.  In other words, we 
are unable to observe the event of interest that otherwise may be observed if the scope of 
analysis were somewhat longer or the subject remained to be under observation.  Survival 
analysis treats these unobserved cases as “censored” to be dealt with in a manner compatible 
with the cases for which the event of interest is observed. 

In order to conduct survival analysis of time to DCJ using the entire career data for the 
period between 1959 and 1968, we need to introduce a set of new variables.  First, Event takes 
the value 1 if a judge received a DCJ posting and 0 otherwise.  While Ramseyer and Rasmusen 
dropped the judges who held non-judicial postings before their first DCJ posting, we keep these 
“stars” in our data set (thus Event=1) and take into account the time they held non-judicial 
postings with the method we will explain later.  Also, we keep the “dropouts” who never 
received a DCJ posting and quit or died before 20.41 years in our data set (Event=0). 

Second, Time is defined as the years a judge needed to receive a DCJ appointment (or 
censored without reaching DCJ) after his or her graduation from the Legal Research and 
Training Institute.  Note that both Time and Time2Sok measure the time a judge takes to reach 
the first DCJ post, although the former is one year greater than the latter so that the former is 
amenable to logarithmic transformation.   

Let E, T and T* denote Event, Time, and Latent Time, respectively.  Latent Time is the 
years a judge would have needed to receive a DCJ appointment if not censored.  We assume T* 

                                                  
9 See Box-Steffensmeier and Jones (2004) for survival analysis in social science. 
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follows a log logistic distribution, f(T*).  A scale parameter is re-parameterized by using 
covariates W and coefficients b: Median(T*)=exp(bW).  If we observe that a judge becomes 
DCJ (E=1), its contribution to likelihood is proportional to f(T).  If the duration of a judge 
remaining as a DCJ candidate is censored (E=0), its contribution to likelihood is proportional to 
the probability of survival: 

∫
∞

=
T

dTTfTS **)()( . 

Parameters are estimated by maximizing total likelihood. 

Left Truncation.  In our data set, if a judge held a non-judicial post (i.e., officers in the 
Secretariat of the Supreme Court or the Ministry of Justice), the time to receive a DCJ posting is 
treated as censored since s/he is no longer at “risk” of reaching a DCJ post and his or her 
duration time is terminated without a transition to DCJ.  When s/he returned to a judicial post, 
his or her time to DCJ resumed, although the resumed time to DCJ includes the time s/he was 
not at risk of reaching a DCJ post, which needs to be considered separately from the time s/he 
was at risk of obtaining a DCJ appointment.  This is the issue addressed as “left truncation” in 
survival analysis, and we introduce a new variable, Begin, to account for the time not at risk of 
receiving a DCJ posting, which is defined as the years a judge took to resume a judicial posting.  
Begin increases along with the years s/he needed to resume a judicial posting, and needs to be 
equated with the years passed since his or her graduation from the Legal Research and Training 
Institute.   

Ramseyer and Rasmusen dropped judges who did not join the court within a year of 
finishing their legal training (mostly those first became a prosecutor or attorney and later joined 
the court).  We follow their strategy in this regard and additionally drop three judges whose 
birth years remain unknown and three other judges who died before 1969 and had no chance of 
becoming a YJL member.  Consequently, our career data set consists of 717 judges, which 
generates 998 observations of time to DCJ, and the median, minimum, and maximum of Time 
for the enlarged data set is respectively 18, 2, and 38 years.10  

When time to DCJ starts at T0, both survival probability and failure density are 
conditioned on the fact that an event has not happened by T0, whose survival probability is S(T0).   
Thus, these conditional survival probability and failure density at T > T0 are S(T)/S(T0) and 
f(T)/S(T0), respectively. 

                                                  
10 Appendix to Masuyama (2005, 411-435) incorrectly lists the following judges as non-YJL 
members (ID in parentheses): Abe Akira (1102), Kuwata Katsutoshi (1127), Oguri Takao (1220), 
Yoneda Yasukuni (1285), Sawada Osamu (1334), Hirokawa Kouji (1574), and Inoue Jirou (1603). 
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Split Population.  Ramseyer and Rasmusen implicitly assume that all judges eventually 
become DCJ, namely, they are at risk of reaching DCJ.  This assumption is dubious, however.  
If leftist judges are severely discriminated, some of them are never on the promotion track.  In 
split population modeling, the population of observations is divided into two groups, one that 
will experience an event of interest and one that will not.  Let r be the probability for a judge i 
to be at risk of a transition or on the promotion track.  Then, the probability to be censored at T 
is (1- r) + r S(T).  The probability to have an event of interest at T is r f(T).  Moreover, we can 
re-parameterize r by using some covariates Z and coefficients a: r = (1+exp(aZ))-1.  We use R 
to analyze the judicial career data and write our own code to deal with the issue of left 
truncation in split population model.11 
 
3. Time to Higher Positions 

Once we regard time to DCJ as a duration time with or without being censored, we can 
also analyze time to other positions in a survival analysis setting.  The reason why Ramseyer 
and Rasmusen examine time to DCJ is that DCJ is a moderately prestigious administrative 
status, which can be used as a proxy for pay.  It is true that the Secretariat promotes some 
judges earlier to DCJ than others.  But, it should also be the case for other higher positions.  
As Ramseyer and Rasmusen (2003, p. 24) themselves admit, High Court presidents and District 
Court chief judges are more prestigious and with higher pay.  Discrimination, if any, would be 
clearer for these posts than for DCJ.  Since not so many judges are promoted to these posts, it 
is hardly an adequate question to deal with their pay in an OLS setting. 

Moreover, some judges skip to High Court without becoming DCJ at a District Court.  
On the other hand, some branch chief judges and non-judicial posts may be considered as an 
equivalent to DCJ.  Thus, DCJ may not be an ideal post to analyze pay discrimination. 

In contrast, we have no need to truncate the period during which judges held 
non-judicial posts because they are continuously at risk of reaching such a higher position (i.e., 
a High Court president and a District Court chief judge).  Hence, every judge has one duration 
observation to each post, and thus we distinguish these non-left-truncated data (N=717) from 
the previous left-truncated data (N=998).  For these positions, dependent variables Time and 
Event are defined as in the case of DCJ except data collection period is up to 2003. 

 
4. Causal Inference for Survival Analysis 
Model Dependence.  Even if we sincerely try to specify the model, we are unlikely to do it 
perfectly.  Failure time may not follow a log logistic distribution and the split population 

                                                  
11 Box-Steffensmeir, Radcriff and Bartels (2006) offers a STATA program to run split population 
model, although their program does not consider left truncation. 
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assumption may not be valid, though we can not be sure.  In this sense, we will have model 
dependent results from application of any parametric model to raw data (As for strict causal 
inference in political science, see Diamond and Sekhon (2004), Ho et al. (2004) and King and 
Zeng (2006)).  

If we take causal inference seriously, the effect of YJL on latent promotion time T* 
should be a difference between Ti* of judge i who would belong to YJL and Ti* of the same 
judge i who would not belong to YJL.  Let X be a dummy variable of YJL (which is called 
treatment in the literature of causal inference), M be a vector of all measured covariates.  That 
is, realized causal effect for judge i is 

∆Ti*(Mi) = Ti*(Xi=1, Mi) - Ti*(Xi=0, Mi). 
If we assume that no omitted variables are associated with Xi and affect Ti*, this 

difference is solely caused by a difference of Xi’s value.  Nonetheless, “the fundamental 

problem of causal inference” (Holland 1986) arises since we cannot observe both Ti*(Ｘi=1) and 
Ti*(Ｘi=0) but at most either of the two.  If Xi=1 and an event of interest occurs (Ei=1), we 
observe Ti*(Xi=1, Mi)= Ti but not Ti*(Xi=0, Mi).  If Xi=0 and Ei=1, we observe Ti*(Xi=0, Mi) = 
Ti but not Ti*(Xi=1, Mi).  Otherwise, we observe neither of the two. 

However, we are interested not in the realized effect on value Ti* of judge i but in a 
potential effect on a random variable T* of judge population.  One of the quantities of interest 
for most scholars is called “average treatment effect” in the causal inference literature, and is 
expressed as 

∑
=

n

in 1

1
E(Ti*| Xi=1, Mi) - E(Ti*| Xi=0, Mi). 

Suppose that we assume E(T*|X, M) has a functional form g(X, M) such as a linear 
function or logistic link.  After we estimate parameters in g(.) by using a conventional survival 
model, we can estimate an average treatment effect by calculating 

 ∑
=

n

in 1

1
g(Xi=1, Mi) - g(Xi=0, Mi). 

A problem is that the model misspecification arises if E(T*|X, M) is not equal to g(X, M) 
and thus the estimate differs from the estimand.  

Matching.  One way to avoid this problem is matching.  Given the assumption of no omitted 
variable, Ti* of a hypothetical non-YJL judge i (but, in fact, Xi=1 is observed) should be equal to 
that of an observed non-YJL judge j (Xj=0) whose covariates M have the same values as those of 
judge i,  

Ti*(Xi=0, Mi) = Tj*(Xj=0, Mj=Mi). 
We can estimate unobserved Ti*(Xi=0, Mi) by Tj*(Xj=0, Mj=Mi) = Tj if the latter is 

observed, namely, Ej=1.  As often the case with survival analysis, we assume censoring is 
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non-informative, namely, Ei is independent of Ti*.  Accordingly, even if we drop such a 
matched pair (not just an observation) where at least one judge’s duration is censored and if we 
calculate an average treatment effect, our estimates will not be biased (but inefficient).  Note 
that, if data were not matched one, dropping censored cases would induce bias (underestimate 
potential duration of censored observations).  In a matched data, when we drop a censored 
observation, we also drop the corresponding observation.  Therefore, no bias occurs.  Let 
j=m(i) so that Mi=Mj and Xi=1-Xj.  We propose to estimate an average treatment effect on 
duration time by 

∑
+

=+

)(

1)(
1 n

in
[Xi{Ti(Xi=1, Mi, Ei=1) – Ti(Xm(i)=0, Mm(i)=Mi, Em(i) =1)}+ 

(1-Xi) {Ti(Xm(i)=1, Mm(i) = Mi, Em(i) =1) – Ti(Xi=0, Mi, Ei=1)}], 
where n(+) is the number of obsercvations where Ei=1 and Em(i) =1. 

Matching also reduces model dependence in parametric modeling.  Ho et al. (2004) 
recommend that we use non parametric matching as “preprocessing,” namely, a tool to remove 
bias of correlated control variables, before we perform any parametric analysis.  We still rely 
on a functional form g(.) and survival model specification such as a log logistic distribution for 
failure time and the split population assumption, though we need not worry about which 
independent variables are included and whether they should be squared or interacted with other 
variables.  Even if matching fails to balance covariates completely, parametric models control 
covariates (as long as they are correctly specified).   

It is, however, impossible to match every YJL judge with such a non-YJL judge who 
has the exactly same covariates (exact matching).  As a second best method, we will match 
every observation to an observation which is as similar as possible with replacement (nearest 
neighbor matching).  Difficult part is how to detect such pairs and this is why various matching 
methods are proposed.  This paper employs a genetic matching method by Diamond and 
Sekhon (2004).  We will assess the performance of matching by checking how well 
distributions of covariates (as well as a joint distribution of them) are balanced between YJL 
judges and the others. 

 
REANALYSIS 

 
Matching and Non Parametric Analysis 

When we match observations in left-truncated data, we match on Flunks, 
Elite_College, Begin, Strata (the number of previous duration observations of the same judge),12 

                                                  
12 For example, suppose that a judge returns to a judicial post after holding a non-judicial post. 
In this case, time to non-judicial post is the first duration for this judge, while the resumed 
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their interactions and squares (except squared Elite_College), ten cohort dummies, interactions 
between cohort dummies and the other four variables.  1997 pairs are matched on.  In the case 
of non-left-truncated data, we match on the above mentioned variables except Begin, Strata, 
their squares and interactions.  We do not match on 1st_Tokyo because it is affected by YJL 
(post treatment variable).  1664 pairs are matched on.13  

Balance of covariates between YJL judges and non YJL judges is almost achieved in 
both datasets.  For example, seven cohort dummies and five interactions between cohort 
dummies and Elite_College are perfectly balanced in the left-truncated data.  Even for the 
worst balanced variable, Flunks, before-matching mean values are 3.49 and 4.12 for YJL judges 
and non YJL judges respectively, while those for after-matching are 3.65 and 3.91; the 
difference becomes narrower.  

In order to summarize the balance of covariate distributions, we compare the 
distributions of propensity scores between YJL judges and non YJL judges before and after 
matching.  Propensity scores are predicted values of logistic analysis where we regress YJL on 
all matched-on covariates, implying the probability that the observation is an YJL judge.  
When balance is achieved and a distribution of covariates is independent of YJL, the 
distributions of propensity scores should not differ between the two judge groups.  According 
to Figure 1 (left-truncated data) and Figure 2 (non-left-truncated data), the distributions of 
propensity scores are considerably different before matching, while they are similar after 
matching.  Clearly, covariates are better balanced after matching in both the left-truncated data 
and the non-left-truncated data. 

<Figures 1 and 2 about here> 
Figure 3 depicts life tables.  According to the upper panel, survival curves are 

indistinguishable between the two groups up to 25th year, while they differ after that.  It is 
difficult to decide whether YJL affects Time to DCJ.  The lower panel tells the two lines are 
similar and YJL does not matter for Time to District Court chief judge.  Since only 30 of 717 
judges became High Court president in our data set, its survival curves are almost flat and 
identical between the two groups.  We omit the figure for High Court president. 

<Figure 3 about here> 
Figures 4 and 5 respectively show the distributions of treatment effect estimates of YJL 

on DCJ and District Court chief judge.  Average treatment effects are 0.253 and -0.093 (shown 
as vertical lines), but their standard deviances are 5.94 and 2.76.  We cannot say that YJL has 
any effect on Time to either of these posts.  Since only one matched pair has a set of observed 
                                                                                                                                                  
duration is the second one. 
13 We use a statistical environment R for estimation. For matching, we use Matching library. 
Options are as follows; estimand is ATE; boot is 1000 following recommendation for 
publication standard. 
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time to High Court president for YJL and non YJL judges, we do not estimate average treatment 
effects on this post. 

<Figures 4 and 5 about here> 
 

Survival Analysis 
Tables 3, 4 and 5 respectively report the results of survival analysis of Time to DCJ, 

District Court chief judge and High Court president.  We calculate standard errors by 
non-parametric bootstrapping.  We resample matched pairs, not observations, with replacement 
in order to retain a balanced joint distribution of covariates between the two groups.  We repeat 
this resampling 1000 times, calculate standard deviances of 1000 sets of parameter estimates in 
the survival analysis, and multiply them by 1000/(1000-1), which will be our estimates of 
standard errors.  The significance level is based on quantile values without assuming any 
distribution of estimates.  Note that standard errors are not robust against deviant values and 
coefficients are sometimes significant despite the relatively larger standard errors. 

<Tables 3, 4 and 5 about here> 
For the covariates in both duration and split population models, we use the same 

independent variables introduced by Ramseyer and Rasmusen (2003).  Among the coefficients 
of YJL, only that of split population part of DCJ analysis is significantly different from zero at 
1 % level.  This means YJL significantly decrease the probability that a judge is at risk of 
becoming DCJ.  Examining the life table in Figure 3 again, some YJL judges have no chance 
to reach DCJ position but, once they are on the track to DCJ, they are not discriminated in terms 
of timing to DCJ.  This result does not contradict Figure 4, which corresponds to the duration 
part of Table 3.  When it comes to the other two posts, YJL does not matter. 

To briefly discuss the estimates for other independent variables, 1st_Tokyo fastens 
Time to DCJ and increases the probability to be on the track to District Court chief judge and 
High Court president.  Flunks decreases chance to be in the population of no DCJ risk.  Since 
Flunks is completely correlated with age when a judge starts his/her career, this result may 
imply that, once relatively older judges are in the DCJ population, they reach DCJ earlier due to 
their age.  Elite_College makes a judge more likely to be on the track to High Court president.  

 
CONCLUSION 

 
Is the Japanese judicial system independent of political control?  Ramseyer and 

Rasmusen (2003) studied how long it takes for a judge to reach a DCJ post and argued that 
judges with leftist preferences do worse in their careers.  However, their analysis is 
problematic since 1) it is based on inaccurate data, 2) takes no account of the issues of censoring 
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and time dependence, and 3) critically depends on their model (mis-)specification.  In this 
paper, we proposed a matching method to reduce model dependence, calculated an average 
treatment effect of being a member of YJL on the timing to reach DCJ, and employed survival 
analysis to deal with the issues of right censoring, left truncation and split population.  Our 
analysis shows that a judge who once belonged to YJL is somewhat less likely to be on the track 
to DCJ, but does not take longer to reach DCJ once s/he is on the promotion track.  Our 
findings are confirmed by the absence of average treatment effect for YJL and non YJL judges, 
even considered other prestigious judicial posts such as District Court chief judges and High 
Court presidents.   

Our method is not limited to an application to Japanese judges.  If the problem at 
hand is the occurrence of an event such as an employee obtaining a certain rank, we must 
properly deal with the issues of right censoring.  We have not only applied survival analysis to 
the data set of judicial careers, but also taken into account the possibility of not all judges 
experiencing the event of interest.  Political scientists become more and more sensitive to 
model dependence.  We have shown that matching helps the results of our survival analysis to 
be robust against model misspecification, and proposed a way to estimate an average treatment 
effect on the timing of a judge receiving a certain appointment.  Although much remains to be 
done, we believe that our analysis provides a good example of causal inference for the students 
of both judicial politics and political methodology. 
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Table 1. OLS Results of Time to DCJ 

 Model 1 Model 2 
 Coef. S.E. Sig. Coef. S.E. Sig. 

YJL 0.919 0.538 0.088 0.818 0.540 0.130  
1st_Tokyo -1.383 0.804 0.086 -1.335 0.793 0.093  
Flunks 0.014 0.071 0.849 0.019 0.070 0.790  
Elite_College 0.086 0.516 0.867 0.086 0.522 0.870  
Constant 22.905 0.785 0.000 22.887 0.787 0.000  

Note: N=501．The coefficients for cohort dummies are omitted.  Significance is based on a 
two-tailed test.  For both models, adjusted R2 is 0.09. 

 



 15

Table 2 Summary Statistics of OLS Models 

 Ramseyer and Rasmusen data Fukumoto and Masuyama data 
 Mean Std Min Max Mean Std Min Max 

Time2Sok 21.711 5.317 11 37 21.681 5.364 11 37 
YJL 0.281 0.450 0 1 0.289 0.454 0 1 
1st_Tokyo 0.104 0.305 0 1 0.108 0.310 0 1 
Flunks 4.828 3.441 0 18 4.880 3.505 0 18 
Elite_College 0.317 0.466 0 1 0.319 0.467 0 1 

Note: N=501． 
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Table 3.  Survival Analysis of Time to DCJ    
       

  Duration   Split   
  B SE  B SE  

YJL 0.012 0.014  -0.872 0.869 **
1st_Tokyo -0.086 0.022 ** 0.488 4.734  
Flunks -0.009 0.003 ** -0.273 0.110 **
Elite_College -0.002 0.013  -0.366 0.355  
Log(Shape) -2.147 0.023 **    
Constants 3.210 0.018 ** 4.239 1.752 **
              
       
Note: N=3994.  Log likelihood is -6003.64.    
* p < 0.1  ** p < 0.05      
Standard errors and significance are based on bootstrap.   
Log logistic model is used.      
The coefficients for cohort dummies are omitted. 
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Table 4.  Survival Analysis of Time to District Court Chief Judge  
       

  Duration   Split   
  B SE  B SE  

YJL 0.006 0.019  -0.208 10.649  
1st_Tokyo -0.034 0.02  0.662 9.484 * 
Flunks 0.009 0.008  -0.098 3.825  
Elite_College -0.022 0.021  0.393 8.486  
Log(Shape) -2.969 0.297 **    
Constants 3.523 0.017 ** 3.211 13.628 **
              
       
Note: N=3328.  Log likelihood is -680.8837.    
* p < 0.1  ** p < 0.05      
Standard errors and significance are based on bootstrap.   
Log logistic model is used.      
The coefficients for cohort dummies are omitted. 
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Table 5.  Survival Analysis of Time to High Court President  
       

  Duration   Split   
  B SE  B SE  

YJL -0.031 0.028  -3.112 30.958  
1st_Tokyo -0.026 0.072  34.146 55.377 **
Flunks -0.003 0.011  -0.601 14.423  
Elite_College -0.025 0.881  20.765 37.243 * 
Log(Shape) -4.347 0.401 **    
Constants 3.911 1.197 ** -44.453 47.028 **
              
       
Note: N=3328.  Log likelihood is -59.06214.    
* p < 0.1  ** p < 0.05      
Standard errors and significance are based on bootstrap.   
Log logistic model is used.      
The coefficients for cohort dummies are omitted. 
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Figure 1. Distributions of Propensity Scores: Left-Truncated Data 
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Figure 2. Distributions of Propensity Scores: Non-Left-Truncated Data 
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Figure 3. Comparison of Life Tables between the Two Judge Groups 
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