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Abstract

Political science is abundant of time-series event count (TSEC) data. This paper

argues that state space form makes TSEC models easy to interpret, compare and

extend. Its merit is illustrated by extension of the Poisson exponentially weighted

moving average model. With help of MCMC, I propose to use negative binomial

instead of Poisson in measurement equation, which has not been used in TSEC models.

Monte Carlo simulation demonstrates that my model is more robust against violation

of Poisson assumption such as omitted variables. Moreover, I rewrite other existent

TSEC models in state space form.
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1 Introduction

Political scientists have studied various kinds of time-series event count (TSEC) data such

as disputes between countries (Brandt et al., 2000), presidential use of forces (Mitchell and

Moore, 2002), effect of the seat belt law on the number of killed and seriously injured

van drivers (Harvey, 1989; Durbin and Koopman, 2000, 421-2) and the annual number

of enacted laws (Fukumoto, 2004; Howell et al., 2000), to name only a few. Analyzing

TSEC data requires them to pay attention to both dynamic structure and the feature of

non-negative integer. Researchers in political science have shirked this difficulty. A few

exceptions in political science are the Poisson Exponentially Weighted Moving Average (P-

EWMA) model (Brandt et al., 2000) and the Poisson Auto-Regressive model (Brandt and

Williams, 2001). Statisticians have developed many models and estimators for TSEC data

(Cameron and Trivedi, 1998, ch. 7), while most existent models use Poisson for count.

Assumption of Poisson, however, is often violated in the real data generation process in

politics as well as in other field. Some variables may be omitted and counts may not be

identically and independently distributed. But previous models cling to Poisson because

other count distributions such as negative binomial do not have conjugate prior which is

used for serial errors and this fact makes estimation difficult.

This paper proposes a new TSEC model which uses negative binomial for count. Its

estimation is possible via Bayesian Markov Chain Monte Carlo (MCMC) method. Monte

Carlo simulation will show that it is more robust against omitted variables than P-EWMA.

This model can also contribute to statistical research as a TSEC model which utilizes non

exponential family distribution.

Models are expressed in state space form, which facilitates our understanding of models

as well as their extension. In the first place, since TSEC models have been presented in

various ways, it is not easy to compare them when analysts choose a model appropriate for
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the data at hand. State space form offers a common format to express TSEC models.

The organization of the paper is as follows. The next section explains state space form of

TSEC models and maintains its merits. In the following section, using state space form and

MCMC, I extend P-WEMA model to introduce negative binomial random walk error model

and demonstrate that the latter is more robust against omitted variables than the former

by Monte Carlo simulation. Section four adds state space representation of other existent

models. Finally, I conclude.

2 State Space Form of TSEC Model

This section explains how to express TSEC model in state space form. Preceding works have

already expressed some TSEC models in state space form, though I emphasize that state

space form can represent almost all TSEC models, enables us to interpret TSEC models in

the same way as ordinary Gaussian time series models, and makes it easy to extend existent

TSEC models.

State space form is composed of measurement equation and transition equation. Mea-

surement equation expresses the distribution of an event count dependent variable (Yt) con-

ditioned on a current measurement covariates vector (xt) and a current state variable (or

vector, θt).

Yt ∼ f(yt|θt, xt, β, ς2),

where β is a coefficients vector and ς2 is an ancillary parameter (of variance). θt may or may

not be count.

Transition equation represents how te past observations (ys<t) or states (θs<t) affects the

present state (θt) conditioned on a current transition vector (zt). Observation driven model
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is written as

θt ∼ g(θt|ys<t, zt, γ, σ2),

and parameter driven model is written as

θt ∼ g(θt|θs<t, zt, γ, σ2),

where γ is a coefficients vector and σ2 is an ancillary parameter. Only a state variable θt

delivers information from past to present. In parameter driven model, covariates and errors

in transition equation continue to affect future observations, while those in measurement

equation do not. Theoretically, this difference is important. For example, autocorrelation

structure of Yt’s should not depend on transition equation parameters and, therefore, reduce

to that of θt’s. In observation driven model, covariates and errors in both equations have

persistent effects on future event counts. In my opinion, the former is better than the latter

because only parameter driven model distinguishes long term effects from short term ones.

If analysts can not estimate state variable (or its moments), however, they can not fail to

use observation driven model.

The most straight-forward model will be a Poisson ARIMA(p,d,q) model. Measurement

equations is

Yt ∼ Poisson(yt| log(mean) = θt + xtβ).

Transition equation is

∆dθt ∼ Normal(∆dθt|mean = ztγz +

p∑
s=1

∆dγθ,sθt−s +

q∑
u=1

γε,sεt−u, var = σ2),
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where

∆d>2θt = ∆d−1θt − ∆d−1θt−1

∆d=1θt = θt − θt−1

εt = ∆dθt − E(∆dθt)

For example, Chan and Ledolter (1995)’s model can be regarded as this ARIMA(1,0,0)

version. Similarly, transfer function model is also easily available.

State space form has some advantages. First, it makes it easy to understand TSEC

models. It divides a time series event count model into time series part and event count

part. Transition equation models the former, while measurement equation models the latter.

We can interpret transition equation of TSEC models like Gaussian time series models such

as ARIMA. Measurement equations can take not only Poisson but also other distributions

for count data such as (negative or beta) binomial, general event count, hurdle Poisson,

zero-inflated Poisson, etc (King, 1989a,b).

Second, state space form offers a common format to express TSEC models and makes it

easy to compare them. Though previous TSEC models are expressed in various ways, to my

knowledge, every model can be rewritten in state space form as long as its likelihood function

is parametrically specified.1 I will show some below. Comparison in the same format makes

difference among models clear and enables us to choose an appropriate model depending on

data generation process.

Third, state space form is flexible enough to model various kinds of data generation

process and extend existent models. Moreover, parameters of every model in state space

form, including a state variable, can be estimated by MCMC, even if closed form of likelihood

function is not available and maximum likelihood estimation is difficult (though identification

1To put it another way, if a model specifies parameters’ moments only, it can not be written in state
space form. Such an example is serially correlated error model (Zeger, 1988). I do not consider them here.
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problems may still remain). This relieves scholars from making a model so that they can

estimate it. Rather, scholars can pay more attention to data generation process.

3 Extension of the Poisson EWMA Model

In political science, few works have addressed both serial dependence and the nature of

non-negative integer when they analyze TSEC data. Brandt et al. (2000) and Brandt and

Williams (2001) are rare exceptions. Brandt et al. (2000) introduce Poisson exponentially

weighted moving average (P-EWMA) model from Harvey and Fernandes (1989) to political

methodology. Thus, I explain it as an example of TSEC model. P-EWMA is a observation

driven model. The present paper proposes a parameter driven model which resembles P-

EWMA data generation process. Then, I extend it so that measurement equation follows

negative binomial distribution instead of Poisson and estimates become robust. I will show

robustness of this new model by Monte Carlo simulation. Previous non Gaussian time series

model, including Bayesians’, have mostly focused on exponential family distributions. In

this sense, too, a negative binomial model of TSEC data is new and important.

3.1 Poisson EWMA as Observation Driven Model

Motivation of P-EWMA is to mimic the following Gaussian model;

Yt ∼ Normal(yt| log(mean) = log(θt|t−1) + xtβ, var = ς2)

θt|t−1 ∼ Normal(log(θt)|mean = log(θt−1), var = σ2).

Difficulty in transforming this model into TSEC version lies in how to estimate θt−1. If yt−1 is

positive, log(yt−1)/xtβ is a good candidate. But yt−1 can be zero, which is a very important

feature of TSEC data. For an arbitrary small positive number, δ, log(yt−1 + δ)/xtβ may
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be used. Cameron and Trivedi (1998) call this “autoregressive model” and criticize δ is “ad

hoc”. (King, 1988) also argues that δ is arbitrary and makes estimation biased and less

efficient. yt−1/ exp(xtβ) avoids this problem but it is inefficient Brandt et al. (2000).

To address these problems, Harvey and Fernandes (1989) propose the P-EWMA model.

Measurement equation has Poisson distribution instead of normal in order to be a distribution

of non-negative integers. Transition equation follows gamma instead of normal in order to

utilize its conjugacy with Poisson.

Yt ∼ Poisson(yt|mean = θt exp(xtβ)) (1)

θt|t−1 ∼ Gamma(θt|shape = at|t−1, scale = bt|t−1), (2)

where

at|t−1 = ωat−1|t−1 = ω(at−1|t−2 + yt−1)

bt|t−1 = ωbt−1|t−1 = ω(bt−1|t−2 + exp(xt−1β)) (3)

0 < ω < 1

and x does not contain constant term for identification.2 Moments of the state variable are

E(θt|t−1) =
at|t−1

bt|t−1

= E(θt−1|t−1) =
EWMAt−1

s=1yt−s, ω, a1|0

EWMAt−1
s=1 exp(xt−sβ, ω, b1|0)

(4)

V (θt|t−1) =
at|t−1

b2
t|t−1

= ω−1V (θt−1|t−1), (5)

where

EWMAt−1
s=1(zt−s, ω, z1) =

( t−1∑
s=1

(ωzt−s)
s

)
+ ωt−1z0.

2If x contains constant term, it would have multicollinearity problem θ1 (and, therefore, other θ’s, too).
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Using Kalman filter, their model estimates not θt’s themselves but derives parameters of

their distribution (a’s and b’s) and, therefore, their moments from observed y’s and x’s as

well as model parameters β and ω. Then, thanks to conjugacy between distributions of both

equations, they integrate out θt’s and have negative binomial as marginal distribution of yt

conditioned on xt, β, at|t−1 and bt|t−1. Then, maximum likelihood estimates of β and ω are

obtained.

Some caveats are in order here. To begin with, conjugacy is required for integrating out

state variable and make closed form of likelihood function available. To put it another way,

if we use MCMC and do not need analytic expression of likelihood function, we do not have

to cling to conjugacy any longer. Next, PEMWA uses lagged yt in transition equation in

order to estimate θt’s moments. But if we can estimate θt’s themselves, we do not have

to use observation driven model and include lagged yt in transition equation. Finally, P-

EWMA offers filtered θt|t but not smoothed θt|T (t = 1, . . . T ), which MCMC estimates.

Thus, P-EWMA does not enable us to sample θ.

3.2 Parameter Driven Model like Poisson EWMA

MCMC enables us to estimate not just moments of θt|t−1’s conditioned on yt−1 but also θt|T

themselves conditioned on yT . Thus it will be more straight-forward to model transition

process by θt’s, not by their moments. Instead of Eq.(2), I propose to use the following

transition equation;

θt ∼ Gamma(θt|mean = θt−1, var = mean ∗ σ2), (6)

where σ2 is a dispersion parameter. This is a parameter driven model like P-EWMA. For

example, moments of θt are similar to that of P-EWMA (Eqs. (4) and (5)). In fact, Monte

Carlo simulation (not reported) indicates that one model can estimate parameters using data
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generated by the other.

σ2 is inversely related with ω in P-EWMA model. In P-EWMA, ω is discount parameter

and implies how long past effects persist. Thus, large ω does not deviate current state from

the past so much. This means, in my parameter driven model, that variance of error terms

is small and, therefore, σ2 should be small. I can show this analytically to some degree. To

begin,

V (θt|t−1) =
E(θt|t−1)

ωbt−1|t−1

=
E(θt|t−1)

EWMAt−1
s=1(exp(xt−sβ), ω, b1|0)

If xtβ = 0 ∀t and b1|0 = 0,

lim
t→∞

V (θt|t−1) =
1 − ω

ω
E(θt|t−1)

Comparing this with Eq.(6), I use as estimator of ω

ω̂ = (1 + σ2)−1. (7)

I rewrite measurement and transition equations so that it resembles ordinary time series

models;

log(E(yt)) = xtβ + log(θt)

log(θt) = log(θt−1) + ε(σ2),

where ε is random error variable whose variance is an increasing function of σ2. If we regard

log(θt) as error term, log(E(yt) in this model (and P-EWMA) looks like (or mimics) random
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walk error process and ε(σ2) works as if it were white noise.3 Thus, we can understand

that, in P-EWMA model, event count component is Poisson conditioned on state variable,

whose temporal structure is random walk error process. Errors are never discounted, while

covariates have nothing to do with future observations.

Since this model does (or can) not use conjugacy between measurement and transition

equations, we do not have to use gamma distribution for transition equation. It will be more

convenient to assume that state variable follows normal distribution because it enables us to

use well established technique for MCMC of Gaussian time series model. To begin, inverse

gamma is conjugate prior for σ2 and makes MCMC efficient. Moreover, when transition

equation includes covariates whose coefficient prior has multivariate normal distribution,

conjugacy between normal and multivariate normal works as well.

3.3 Negative Binomial I(1) Model

Previous non Gaussian time series model, including Bayesians’ ( e.g. West, Harrison and

Migon, 1985), have focused on exponential family distributions. Grunwald, Hamza and

Hyndman (1997, p. 619) argue that, in power steady model including P-EWMA, “[b]oth

the temporal characteristics of the model · and the dispersion of the forecast distribution

are controlled by” a single model parameter (Actually, in my opinion, this is the trick to

make estimation possible). “As a result, the range of possible models is quite limited.” Even

if one adds a scale parameter, no discrete distributions of exponential family with support

3This is why data generated by Harvey and Fernandes (1989)’s P-EWMA model may reach and stick in
zero counts. In order to avoid this, Brandt et al. (2000) replace Eq.(3) with

bt|t−1 = ω[bt−1|t−2 + exp{xt−1β + Ψ(at−1|t−1) − Ψ(at|t−1)}]

where Ψ(x) is digamma function,

Ψ(x) =
∂ log Γ(x)

∂x
.
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on the non-negative integers exist. Thus, in order to take into consideration conditional

overdispersion, we should depart from Poisson.

In actual data of political science, violation of Poisson assumption is probably common.

Events may not be identically and independently distributed. Some variables may be omit-

ted. Usually, negative binomial is a robust alternative to Poisson in this situation. But since

negative binomial has no conjugate prior, it has not been used for TSEC model.4

Fortunately, as I argued, MCMC makes it possible to estimate negative binomial mea-

surement equation. It just replaces measurement equation of P-EWMA, Eq.(1), with

Yt ∼ NegativeBinomial(yt|mean = θt|t−1 exp(xtβ), var = mean × ς2), (8)

where ς2 > 0 is a dispersion parameter. Below, I call this model NB-I(1) to emphasize

that transition equation is first order integrated (i.e., I(1)) error series. Note that, in P-

EWMA model, marginal distribution of yt conditioned yt−1 is negative binomial. Eq.(8) is

conditional, not marginal, distribution given θt. Difference lies in where errors come. NB-

I(1) model considers that there may be omitted variable in x, measurement errors in x or

some contagion among subjects may exist, while P-EWMA does not. Thus, when P-EWMA

estimator faces overdispersion in measurement equation, it feeds large errors in transition

equation. This results into underevaluation of ω (because of overevaluation of εθ(ω) as shown

in the following Monte Carlo simulation. By contrast, NB-I(1) model correctly classifies

systematic parts and stochastic parts into persistent ones (β and σ2) and temporary ones (γ

and ς2).

As prior distribution, I assume multivariate normal for β, inverse gamma for σ2, gamma

for ς2 and θ1. The MCMC algorithm I use is random walk Metropolis-Hastings sampling

4Bradlow, Hardie and Fader (2002) propose approximate conjugate prior for negative binomial. If one
parameterize size and probability, beta is conjugate prior (Harvey and Fernandes, 1989). But this parame-
terization does not help us to model overdispersion without changing model of mean.
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nested in Gibbs sampling.5

3.4 Monte Carlo Simulation

In order to show that NB-I(1) model is more robust against omitted variable (or random

effect) than P-EWMA, I demonstrate Monte Carlo simulation. I draw 500 observations of x =

(x1, x2, x3) from multivariate normal distribution only once. Its mean is (0, 0, 0), V ar(X1) =

V ar(X2) = V ar(X3) = 0.5 and Cov(X1, X2) = Cov(X1, X3) = 0 but Cov(X2, X3) = 0.5.

I set β = (β1 = 0.75, β2 = −0.5, β3 = 2) and ω = 0.9. Then, for one simulation, I sample

yt’s (t = 1 . . . 500) using P-EWMA data generation process. I repeat this Y generating

simulation 40 times and obtain 40 sets of Y composed of 500 observations. I estimate

P-EWMA parameters and NB-I(1) ones using these same Y’s 40 times. 6

Table 1 reports summary of estimates. For P-EWMA, they are maximum likelihood

estimates. For NB-I(1), they are median of posterior parameter samples. Clearly, NB-I(1)

is more robust against an omitted variable than P-EWMA. β̂1 is less biased in NB-I(1).

P-EWMA has smaller bias of β̂2 which, however, should be not zero but one due to omitted

variable bias:

β̂2 − β2 =
Cov(X2, X3)V ar(X2)β3

V ar(X2)
= 1. (9)

In this sense, NB-I(1) has a correctly biased estimate closer to what it should have compared

5Alternative estimators are posterior mode (Fahrmeir, 1992, with extended Kalman filter and smoother)
and piecewise linear function (Kitagawa, 1987, also with filtering and smoothing, but this is not so attractive).

6For data generation and P-EWMA estimation, I use Brandt et al. (2000)’s R code, “pests.r”, on a
statistical software R. The code is version 1.1.2 (revised on September 20, 2005) and is downloaded from
http://www.utdallas.edu/ pbrandt/codepage.html on March 28, 2006. I appreciate Patrick Brandt for
making the code public. I write and run the NB-I(1) code by myself. I discard first 100 draws as burn-in
and use next 1,000 draws without thinning. Hyperparameters of priors are chosen so that they are non-
informative. All simulation process takes about 20 hours. For one simulation, estimates of P-EWMA are ill
behaved (ω is larger than one, which should not happen, the hessian is not positive definite and, therefore,
standard errors are not available for some variables). Thus, I exclude estimates of this data by both models
from this summary.
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with P-EWMA.7 NB-I(1) estimates are more efficient. For every Y , NB-I(1) has smaller

discrepancy statistic ((sample mean of) −2 log likelihood), which means that NB-I(1) fits

data more than P-EWMA from Bayesian perspective. Hence, mean discrepancy statistic is

also smaller. ω̂ of NB-I(1) is estimated according to Eq.(7). This estimate is very rough

approximation but is still less biased than P-EWMA estimate, which is very small in order

to absorb overdispersion in measurement equation. ς̂2 (only for NB-I(1) by construction)

explicitly shows that there is overdispersion and something is wrong with Poisson assumption.

P-EWMA NB-I(1)
Bias β1 −0.218 −0.067

β2 0.737 0.980
ω −0.777 −0.374
ς2 36.663

Variance β1 0.006 0.001
β2 0.002 0.001
ω 0.034 0.009
ς2 133.802

−2 Log Likelihood 11291.996 4966.032

Table 1: Estimates Summary of Monte Carlo Simulation

4 State Space Representation of Other Models

Cameron and Trivedi (1998) classify TSEC models into six types. I have already referred

to three of them. I rewrite two of the others in state space form using common variable

notations so that it is easy to compare models.

4.1 Integer Valued ARMA (INARMA)

Alzaid and Al-Osh (1990) and McKenzie (1988) propose similar models, which are together

7Negative binomial assumes that random effect is independent of mean of dependent variable. Thus, it
is expectedly robust against inefficiency but not against bias due to omitted variables.
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called Integer Valued ARMA (INARMA). p th order autoregressive and q th order moving

average model (INARMA(p,q)) is as follows.

Yt =

p∑
s=1

ω ◦ yt−s +

q∑
s=0

εt−s

εt ∼ Poisson(εt|mean = ς2)

where ◦ is a binomial thinning operator,

ω ◦ yt−s = θt,s

∼ Binomial(θt|size = yt−s, probability = ω)

Their presentation intends to remind us of similarity with ARMA model, especially similar-

ity of moments. MA component represents arrival counts, while AR component expresses

survival counts. Thus, this model is appropriate for stock count but not for flow one.

It is easy to rewrite this model in state space form. Measurement equation is

Yt = θt + εt

εt ∼ Poisson(εt|mean = ς2).

Transition equation is

θt =

p∑
s=1

θt,s +

q∑
s=1

εt−s

θt,s ∼ Binomial(θt,s|size = yt−s, probability = ωs).

State variable θt is a non-negative integer.
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4.2 Discrete ARMA

Cameron and Trivedi (1998, 245-6) give this model as

Yt = ϑtyt−1 + (1 − ϑt)εt

εt ∼ Poisson(εt|ς2)

ϑt ∼ Bernoulli(ϑt|ω).

In this model, two variables are passed from the previous period to the current one: lagged

dependent variable and whether it affects the present one or not. Thus, I assume state vector

θt = {θt,1, θt,2} instead of state variable. Measurement equation is

Yt = θt,1θt,2 + (1 − θt,1)εt

εt ∼ Poisson(εt|ς2).

Transition equation is

θt,1 ∼ Bernoulli(θt|ω)

θt,2 = yt−1.

5 Conclusion

Political science is abundant of TSEC data. So far, most scholars have paid attention to

either time series side or event count one. Recently, new models come to address both

features at the same time. Even they, however, have limitation. Most assume Poisson. It is

not easy to compare models.

The present paper proposes NB-I(1) model in state space form where measurement equa-
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tion has negative binomial and transition equation follows random walk error process. Monte

Carlo simulation illustrates that my model is more robust against omitted variable than cur-

rently used P-EWMA model. As readers may see from this exaple, state space form makes

models easy to interpret, compare and extend.

A lot of future agendas are still ahead. Features of the estimator for a finite number of

observations (such as efficiency and speed of asymptotic convergence) have not been explored

well yet. Even though Monte Carlo simulation in the present paper employs data composed of

as large as 500 observations, estimate of dispersion is still biased. When, in another paper,

I examine another TSEC model where measurement equation has negative binomial and

perform simulation using 1,000 observations, estimate of dispersion is unbiased. Moreover,

as is always the case with Bayesian analysis, computational time can be very long. From

my experience, 1,000 scans are enough for covariates but not for parameters of variance and

dispersion. More severe is observation size. For 100 observation and 1,100 scans, it takes

just 10 to 20 seconds. But computational time increase geometrically as observation size. I

will address them in a revised version.

16



References

Alzaid, A. A and M. Al-Osh. 1990. “An Integer-Valued pth-Order Autoregrtessive Structure
(INAR(p)) Process.” Journal of Applied Probability 27:314–24.

Bradlow, Eric T., Bruce G. S. Hardie and Peter S. Fader. 2002. “Bayesian Inference for the
Negative Binomial Distribution via Polynomial Expansions.” Journal of Computational
and Graphical Statistics 11:189–201.

Brandt, Patrick T. and John T. Williams. 2001. “A Linear Poisson Autoregressive Model:
The Poisson AR(p) Model.” Political Analysis 9:164–84.

Brandt, Patrick T., John T. Williams, Benjamin O. Fordham and Brain Pollins. 2000. “Dy-
namic Modeling for Persistent Event-Count Time Series.” American Journal of Political
Science 44:823–43.

Cameron, Adrian Colin and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cam-
bridge, UK ; New York, NY, USA: Cambridge University Press.

Chan, K. S. and Johannes Ledolter. 1995. “Monte Carlo EM Estimation for Times Series
Models Involving Counts.” Journal of American Statistical Association 90:242–52.

Durbin, J. and S.J. Koopman. 2000. “Time Series Analysis of Non-Gaussian Observations
Based on State Space MOdels from Both Classical and Bayesian Pespectives.” Journal of
the Royal Statistical Society. Series B 62:3–29.

Fahrmeir, Ludwig. 1992. “State Space Modeling and Conditional Mode Estimation for
Categorical Time Series.” In New Directions in Time Series Analysis, Part1, ed. David
Brillinger. New York: Springer-Verlag pp. 87–109.

Fukumoto, Kentaro. 2004. ”How Many Laws does the Legislature Make? Cross Country
Comparison and Cointegrated Time Series of Japan.” A Paper Prepared for the Annual
Meeting of the Midwest Political Science Association, April 15-8, 2004. Chicago, IL, USA:
.

Grunwald, Garay K., Kais Hamza and Rob J. Hyndman. 1997. “Some Properties and Gener-
alizations of Non-Negative Bayesian Time Series Models.” Journal of the Royal Statistical
Society. Series B 59:615–26.

Harvey, A. C. and C. Fernandes. 1989. “Time Series Models for Count or Qualitative Ob-
servations.” Journal of Business and Economic Statistics 7:407–17.

Harvey, Andrew. 1989. Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge ; New York: Cambridge University Press.

17



Howell, William, Scott Adler, Charles Cameron and Charles Riemann. 2000. “Divided Gov-
ernment and the Legislative Productivity of Congress, 1945-94.” Legislative Studies Quar-
terly 25:285–312.

King, Gary. 1988. “Statistical Models for Political Science Event Counts: Bias in Conven-
tional Procedures and Evidence for the Exponential Poisson Regression Model.” American
Journal of Political Science 32:838–62.

King, Gary. 1989a. Unifying Political Methodology. Cambridge: Cambridge Univeristy Press.

King, Gary. 1989b. “Variance Specification in Event Count Models: From Restrictive As-
sumptions to a General Estimator.” American Journal of Political Science 33:762–84.

Kitagawa, Genshiro. 1987. “Non-Gaussian State-Space Modeling of Nonstationary Time
Series.” Journal of American Statistical Association 82:1032–41.

McKenzie, Ed. 1988. “Some ARMA Models for Dependent Sequences of Poisson Counts.”
Advances in Applied Probability 20:822–35.

Mitchell, Sara M. and Will H. Moore. 2002. “Presidential Uses of Force during the Cold
War: Aggregation, Truncation, and Temporal Dynamics.” American Journal of Political
Science 46:438–52.

West, Mike, P. Jeff Harrison and Helio S. Migon. 1985. “Dynamic Generalized Linear Models
and Bayesian Forecasting.” Journal of American Statistical Association 80:73–83.

Zeger, Scott l. 1988. “A Regression Model for Time Series of Counts.” Biemetrika 75:621–29.

18


