代数学2

担 当 者 単 位 数 配当年次 学 期 曜 日 時 限
青木 昇 講師 2 3~4 第2学期 3

授業の目的・内容

初等整数論における様々な事柄は数の世界を代数的数の範囲まで広げると本質的なものが見えてくることが多い。しかし、数の世界を広げることは同時に新しい困難を生じてしまう。通常の整数の世界では当たり前に思える素因数分解の一意性などの破れなどはその代表的な例であり、そのことが整数問題の困難さの大きな一因になっている。有理数体の次に簡単な代数体である2次体で我々は既にその困難さに遭遇する。この講義では、2次体の整数論の基本的な事柄を解説し、代数的整数論の入門を目指す。 

授業計画

素数についてのお話
算術の基本定理
ユークリッドの互除法
ガウス整数環
ガウス素数
二つの平方数の和で表される整数
2次体の整数環
2次体の単数
連分数
10 ペル方程式
11 2次体のイデアル
12 素イデアル分解
13 2次体の類数
14 オイラー多項式
受講者の予備知識と理解度を確認するため、毎回簡単な問題を解いてもらい提出してもらう予定。詳しい方法は第1回目の授業で説明する予定。

成績評価の方法

レポート
毎回提出してもらうレポートおよび最後のまとめのレポートを総合して成績評価を行う。

教科書

教科書は特に指定しない。参考書については授業時に随時説明する。

履修上の注意

第1回目の授業に必ず出席のこと。