すこし前に「シラバスとは何語だ?」と書いたところ、
シラバスとは英語の syllabus ですよね?とのご指摘を受けた。 それは、そうで、辞書をみると
syl・la・bus [s#l#b#s] #n. (pl. 〜・es, -bi [-b#i]) 《講義の》 摘要, 大要, 要目; #時間割; 【法】 判決要旨, 判決の頭注; 【カト】 教書要目, 教会摘要; [OS#] 《教皇 Pius 9 世が 1864 年に発表した 80 か条から成る》 謬説表, シラブス (L Syllabus Errorum) (=S# of #rrors).とある。
言いたいのは、じゃあ、なぜ「講義内容」とか「講義概要」と書かずにカタカナを使うか、ということ。 これら日本語では表現しきれないニュアンスがあるのか? もしあるならば、単にカタカナを使って逃げるのではなく、そのニュアンスの違いをきちんと説明してくれよ、ということです。 (お役所のカタカナ言葉濫用を批判する朝日新聞的凡庸な(しかし、正当な)議論です。)
しかし、中学生の娘も「シラバス」というのをもらって来ているし、これは極めて普通のものになっていくのかも。 ぼくらが子供のころ「アイスクリーム」(頭の中で「アイスク・リーム」と切っていた)が ice cream だと知らずともその意味を完全に把握していたのと同じように、これからの人たちは「シラバス」をごく普通の言葉と受け取るようになるのか。
ここまで書くなら、large deviation principle (大偏差原理)との関連にも踏み込んでほしかった、とつい思ってしまう。 もちろん、ここでは1変数の問題だけを扱っているのだから、そこまでやる必要がないのはよくわかっているが。とのご感想もいただいた。
そもそも、ぼくの large deviation についての知識では、 何かきちんとしたことを書くなど望むべくもなかったのだけれど、 (少しかじってみるだに) この関連はあまりに美しい(ようだ)。 ただし、これは、熱力学よりは統計力学の設定で見た方がより意味がある。
現在計画中(妄想中というべきか)の統計力学の教科書は、 こだわらずに、実用的な入門書にするつもりだけれど、 やはり、
忙しい一週間だったのですが、実は未だ信じられないほどやるべきことがたまっている。 明日は丸一日会議で拘束されるけれど、そのまえにやっておかねばならぬことが、 いくつか。 (FF9 を進める、とかいうオチではありません。残念ながら。) かつ来週なるべく早めまでにやらねばならないことは、かなりいっぱい。 今日は夜までに奇跡的に仕事をしなくてはいけない。
というわけで、今朝もリポビタン D を一本あけてがんばっております。 けっこう癖になりますな。こりは。
奇跡というのは、 そう易々とはおきないから奇跡なのであって (いや、真面目に考えると、決して起きないのが奇跡か) 、未だに雑用は片づかない。 (もちろん FF9 なんて全然やってない --- ことはないけど、深夜に一時間くらいやっただけ。 これだけだと、単にミニゲーム+映画鑑賞。 そろそろ終了したという話も耳にするけど、たしかに大学生が脇目も振らずにやればそんなものか。 小学生の息子でも、学校だサッカーだ宿題だと忙しく暮らしつつも、CD 2枚目に入っているし。)
ともかく、週末に期末試験があるから、 試験問題をつくらないことにはどうしようもない。 今朝からやっているので、あらかたできました。 けれど、レポートの採点はまだ全然です。 お待たせしているみなさんごめんなさい。 なにせ例年になく問題が大量にあり、好きなのを三問解けばよい、といってあるので、 採点といっても大変そうである。 S 君(どうも S 君という人がよく登場するけど、全部別人)が全問解いて出してくれた。 彼の解答はかなり信頼できるので、 採点の際の模範答案にしようかと思ったのだが、 いかんせん、字が読めるか読めないかの限界くらいきたないんだよな。 なんとかしてくれ。
明日の午前中に学習院の中等科に出かけていって、「交流授業」というのをやることになっている。 (リポビタン D をのむべきか悩む。) これが、忙しくなっている理由のひとつ。 今日の午後はその打ち合わせやら準備(70度で融解する合金を用意したり、とか) をしていたのだった。
忙しいなら、こんなものを書かなければよいわけだが、 最近は周辺の人たちも読んでくれているので、 あらかじめ言い訳を公表しておくというねらいもあったわけである。
といったところで、仕事に戻りましょう。
ふう。 学習院男子部中等科3年生への「交流授業」2こま無事終了。
正直いってかなり大変だったけど、楽しかったし、(ぼくにとっても)ためになった気がする。 今は暇がないので、また後で詳しく書くつもり。
ふううう。 統計力学のレポートのチェック完了。 私の部屋の前に出してありますから、取りに来て下さい。 (←別に重要なことではないけど、連絡事項なので強調。)
落ち着いて数えてみたら、全部で二十三題もの問題を出題していた。 そのなかから少なくとも三題は解きなさいと指示したわけだから、 答案にバラエティーが出るのは必至。 チェックするのも時間がかかる。 ただし、あまり飽きてこないというメリットもあるな。
それにしても、 それぞれの人が何番を解いたかを表紙に記入してもらえばよかった。 それを自分でやっていたから、余計に時間がかかったのだ。 来年への教訓としよう。 (忘れそうなので、来年統計力学を取る人、覚えておいてくれ。)
中等科の3年生で、試験返却授業のコマがひとつ余ったらしい。 そこで、 大学理学部から何人かが教えにいくという「交流授業」を、 理科担当の T 先生(うちの大学の卒業生;ぼくの初期の教え子(もっとも優秀な卒業研究生の一人)でもある;大学院は高橋研究室)が企画してくれた。 すぐお隣の立派な校舎で勉強している学習院の中学生に、少しでも科学に(ついでに大学理学部に)関心をもってもらえたら嬉しいし、中学生が勉強する様子も見てみたかったので、(馬鹿忙しいときにさらに仕事を作ることを省みず)物理からはぼくが出向くことにしたのだった。
中学三年生というと、 それほど物理らしい物理も学んでいないから、 あまり難しい話をしてもしょうがない。 かといって、ブラックホールのビデオとかを見せるんじゃ馬鹿らしいので、 やはり、ぼくが面白いと思っていることをやることにして、 簡単な実験を交えつつ物質の三態、および相転移の話をすることにした。 ぼく一人では実験に手間取ることもあるだろうし、液体窒素を汲んだこともないので、実験の研究室の助手の H さんにお手伝いをお願いした。 実は、H さんは(優れた物理学者であることはいうまでもないが) 中等科の T 先生の同級生(よって、ぼくの初期の教え子の一人; 試験のとき「田崎」の「崎」の字を間違えて「埼玉」の「埼」と書いたという珍しいやつである; 話は変わるが、 Princeton で教えていたとき、ぼくのクラスで、 テストの答案の担当教員の欄にまちがえて Tsui と書いた女の子がいた。 (普段は、「先生」のことも Hal と名前で呼び捨てにしているのです。 あの国では。) 物理で東洋人で T で始まるという共通点か。 Tsui さんはすごい実験家らしいから、まあ許そう。)なので (くわえて、彼は、学生時代に応援団団長を努めたというインパクトのあるキャラクターなので) 生徒の関心をひくための「ネタ」としても利用させてもらおうと思ったわけだ。 (ちょっと、ずるい。 H さんは、明日か明後日だかに国際会議で渡欧するという超多忙なスケジュールだったのに、ぼくが無理を言って手伝ってもらったのであった。 お忙しい中、ご協力ありがとうございました。)
授業の進め方は以下のとおり。
たしかに、すぐに「私語」がはじまる。 (試験の後、必修の授業、しかし、レポートも何もなく成績にはまったく無関係、 と来れば、さらに気もゆるむであろう。) 教壇に立って、生徒を見ながら大きな声でなるべく面白く話していても、 少しすると教室の二、三カ所で気がそれて互いに話しはじめるのだった。 大学では、ぼくが「トーク」に入ればみんな完全に静かになってこっちを見て話を聞くのが普通だから、やはり最初はとまどった。
けっきょく、板書は最低限に留めて、 生徒のあいだを歩き回り、 しょちゅう直接に質問しながら、デモンストレーションや説明をすることにした。 (一回読みきりのお楽しみ授業だからこれでいいわけだけれど、 真面目に何かを教えるときは、やはり大変だろうな、と思う。) それでも騒ぐときは騒ぎ、隣同士でじゃれ合うときはじゃれ合うものなので、 「プロレスはやめろっ!」と頭の上にチョップを振り下ろす真似をしたり、 騒ぎかけてる奴のところに言って質問したり、と素人ながら、がんばってみたのであった。 (T さんも騒ぎそうな生徒をマークしたり、と助けてくれた。)
振り返ると、 生徒たちは、なんだかんだ言っても、総じて素直だった(ギャグにもそこそこ反応してくれた)し、それなりに授業を楽しんでくれていたように(勝手に)思う。 二クラスに一時間ずつ教えただけだけれど、けっこう、愛着さえわいた。 さらに、ぼくにとっては、 生まれて初めてのデモンストレーション主体の授業だったし、 「しっかりした準備と巧みな話術」 だけでは通用しない教育の世界のほんの一端を垣間見た(つもりになれた) という点でも有意義だった。 T さん、どうもありがとうございました。
ついでに、予期しなかった副作用として、 視点が中学生まで広がったためか、 「大学の物理学科で学んでいる学生さんたちは、やっぱり、 ものすごくやる気があって、こんな難しいことをやっているんだよなあ」 という気が無性にしてきて、 交流授業で疲れた体をむち打ってレポートの採点をするのも、それほどは苦にならなかったのも面白い。
期末試験採点中。
試験の採点はまったく終わっていません。 すみません。 (試験終了後即座にトランス状態に入って猛烈な勢いで採点し、 その日のうちに成績表までつけてしまうという裏技は、 今回は発動しなかったのであった。 (ちなみにこの技を私に伝授してくれたのは、Legendre 変換と large deviation についてのコメントを下さった H さんなのだ。 うまく発動させると、そのあとの仕事のスケジュール等が非常に楽になる。) ) 一頃はかなり確実にこれをやっていたのだが、 やはり年齢か?)
東京は曇りという予報だったので、半ばあきらめていたのだが、 少々雲がでている程度だったので、月が喰われていく様子をはっきりとみることができた。 完全に暗くなった月を見ると、生理的に極めて不気味なのはさておき、妙に立体感があるように感じ月は球体だと実感できる気がするから面白い。
ぼくは、二十数年前(だと思う)にも皆既月食を見た。 あのときは、月が完全に地球の影に入ると、 不気味な赤黒い色に見えるようになり、暗い空のなかで妖しく光っていたという記憶がある。 異様に美しく非現実的で感動したのを覚えている。 それに比べると、今回の月は単に暗くぼけているだけという感があり、 記憶のなかの赤黒い月ほどのインパクトはなかった。 二十数年前の大阪の片隅の暗い空と、 もややスモッグが街の灯りを反射して一面ぼおっと光っている今の東京の空とでは、差があって当たり前かもしれないが。
種明かしを知って、欠けていく月を見ると、確かに地球の影がうつっているというのはきわめて納得できる。 考えてみると、 いつかの時代に、人類としてははじめて 「あ、あれってひょっとして地球の影なんじゃない?!」と思いついた人がいたわけだ。 気持ちよかっただろうな。 (もちろん、その思いつきと、ほかの種々の観測事実(水平線に船が見えるとき・・・、などなど)の整合性を吟味して、まとまった描像をつくり、その正当性を吟味するというのは並大抵のことではないが。 (ラッセル「西洋哲学史」によると、古代ギリシャのピタゴラス主義者たち(ただし、ピタゴラス自身ではなく、その後継者たち)は、そういうことを成し遂げていたらしい。(ちなみに「西洋哲学史」は雑学を得るための読み物として読んでも極めて愉しい。ピタゴラス学派についてのエピソードなどは、講義での「お笑い教養トーク」ねたとしても活用ずみ。)))
夏休みになり学内が急に静かになった。
だが、試験の採点はおわっていないし、 会議のための宿題もまったく手つかずで、 量子統計と熱力学第二法則の関連についてのノートをまとめかけているのだが、 いっこうに進まない。 などなど。
この「雑感」に書こうと思った話もあったはずなのだが・・・
で、右上の図が S 君が描いてくれたグラフ。 もちろん、低温・高温での漸近評価から得られる結果そのままだけれど、 目ではっきり見るのもまたいい。 たしかに、低温では大きな傾きをもった直線だが (図に「Dulong-Petit まがい」とあるが、 こういう場合の日本語としては「Dulong-Petit もどき」 がより適切であるぞ。S さん)、 高温ではより小さな傾きの直線になっている。 (しつこいが、これは toy model であり、 ここに見られるのは本当の相転移でないことに注意。)
ところで、この問題では、Gibbs のパラドックスに関連した N! の因子の役割がデリケートであることを、ほかならぬ(問題のきっかけを作った) A 君に指摘された。
高温の理想気体領域では N! でわると示量的な熱力学関数が得られるが、
低温のポテンシャルに捕獲された領域では N! でわるとやりすぎに見える。
しかし、本当に、N 個の粒子が相互作用もせず、小さなポテンシャルの谷間に捕まってしまうとすると、この場合には示量的な熱力学は成立しないだろう。
だから、これは仕方がないことだといえる。
(各々の粒子が別のポテンシャルにトラップされていると解釈することもできるが、
その場合には話は、まえに書いたことに尽きる。
なにか「正直な多体問題」とそうでないものが混ざった気持ち悪いもになっている。)
小学校も中学校も夏休み。 いろいろと子供の手伝い等をしなくてはならないから、 たいへんだ。 つい、やりたいことを優先させてしまい、 引き延ばし可能なものは後にまわす。 試験の採点は引き延ばせば引き延ばすほど苦しくなる (内容を忘れていく) ことはわかっているのだが・・
考え事をしているあなたは体の中のどこにいますか?という質問と回答欄あり。 幼い頃、眠れない夜に考えたり実験していたりした定番の問題。なつかしい。
おへその裏側辺りといった奇抜な答をしたいところだけれど、 どう考えても、
目の少し上の頭の中という月並みな答しかでてこないのだ。 (目をつぶってじっと寝ていても、そう感じる。 (そういえば、何かの修行で、自分は腹の中にいると自分に言い聞かせ、 そう感じるようになるまで頑張る、とかいうのがあると聞いたような・・))
なぜ、頭の中に自分がいると感じるかについては、大ざっぱには、
もちろん、 だからといって、人間の脳の働きを科学的に解明しようという試み全てが無意味だなどという話にはならない。 むかし聞いた話だけれど、 脳波を徹底的に測定して脳の働きの鍵としようという研究について、 有名な物理学者の Onsager が
それは、電話線を流れる電流を測定することで、 電話のシステムを理解しようとするようなことだと述べたそうだ。
それは、おそらくその通り。 あるいは、もっと絶望的な試みかも知れない。 でも、電話線の電流からも、昼夜の差だとか、 地震などの後にやたら電流が増すことなど、 電話の役割のヒントは少しずつは得られる。という謙虚だが積極的な姿勢で臨むべきなのであろう。 月並みな結論ではあるが。
きのうの「どこにいる」アンケートだけど、
眉根のちょっと先のあたり。からだの中からはちょっと離脱している。人もいるらしい。 顔から転んだときなど、地面のなかに入っちゃうんだね。 種々の状況で他人と顔をくっつけたりするのも、ぼくらと違う感覚かも。 (ネット上の)知り合いだけど。
机に向かった椅子にすわり、利き手を机の下にいれ、机の裏側に指で「あほ」などの文字を書くというだけのこと。 おもしろいことに、このとき、指の動きはまったく見えないにもかかわらず、 上から(机を透かして)見たときに正しく見える文字、つまり、実際には裏文字を書く方がずっと楽なのだ。 どうも、ぼくらの脳は、見えてもいない手の動きを、目の位置からモニターしたつもりになって制御しているらしい。 とことん(見えない)視覚情報を遮断して、手の動きのみにローカルに集中すると正文字を書くこともできるのだが、ぼくはこっちの方が苦しい。 (自分は全然ちがうという人がいたら教えて下さい。)
この実験の発展形として、 机の下に下敷きをいれて、普通の向きから出発し、 徐々に下敷きの向きを変えながら、指で「あほ」と書いてみる、 そして、どのあたりで正文字→裏文字の転移があるかをみる、 というのもできる。 (付記:10/3 の記事を参照。)
久々に雑用をしないで、証明のつめをしたり、論文的なものをまとめたりして過ごしている。 大した話じゃないけれど、やはりすごく楽しい。
こうやって雑用(試験の採点も含む(ごめん。教えるのは好きなんだけど、採点は嫌いなんだよー))を先延ばしにすることで、 未来の自分を追い込んではいるんだけど。
ふう。 雑用の合間をぬって、
平衡分布を仮定して、最大仕事の原理やエントロピー増大則をだすというささやかな話のノートをまとめた。 自宅の iMac とキャノンのプリンターで、ばっちり TeX で論文を書いて、人にメールで送ったり、印刷したりできるんだからからすごい世の中だ。 (妻や子供が使っていると使えないという弊害はあるが。)
「解釈問題」のもっとも「解釈問題」たる部分は、 決して実験では解決されないから「解釈問題」なのであって、 それは普通の意味での物理にはならない。 それに対して、「観測問題」は純然たる物理の問題。 (というのが標準の理解だろうし、ぼくもそう思う。)
「多世界解釈」にしろ「コペンハーゲン流手続き」にしろ、まだまだ気持ち悪さが残る。 「多世界」なら、なぜ物理系の実際の歴史が数多くの分岐のなかの「一つ」(←この意味はデリケート)を辿っていくように見えるのか; 「コペンハーゲン」なら、なぜ従来の射影の手続きで物理がきちんと記述できるのか、ということ。 これらは、同じ疑問。
考えるべき課題はおおまかに言ってふたつ。
ひとつめは、
1. 巨視的な系が相互作用しながら時間発展していくとき、なにがおきるかを解明すること。 とくにマクロな(≒古典的な)変数の役割をはっきりさせる。 いわゆる decoherence の問題。 Omnes の本などを読む限りでは、既存の結果はまだまだまだまだごく初歩的なものだけだと感じる。 (Omnes が単に状態が直交することと decoherence が生じることをろくに区別していないのは、いかんですね。) これは、多体量子系の物理学に関する、困難だが重要で面白い課題。 (統計物理の基礎とも深く関わるであろう。)
しかし、たとえこのひとつめの問題が完全に解決しても、「なぜわれわれはシュレディンガーの猫と会わないのか?」という問題への根本的な解答は得られないだろう。 (「解答」と称するものにはかならず意識の働きについての秘められた仮定があると思う。) ここを突き詰めると、けっきょく、
2. 量子力学のなかに、われわれの「意識」をどう位置づけるかというかなり厳しい問いに直面してしまうのはず。 これを今の段階で科学にのせるのは無謀だと思う(し、無理にこじつけをやっても(たとえ面白そうな話だったとしても)本当には面白くない)。 ともかく 1 の問いにじっくりと答えながら、 ときに(秘かに) 2 の問いに思いを馳せるというのが正しいと信じる。